1. 程式人生 > >faster RCNN(keras版本)程式碼講解(3)-訓練流程詳情

faster RCNN(keras版本)程式碼講解(3)-訓練流程詳情

一.整體流程概述
1.輸入引數,其實輸入1個就行了(D:\tempFile\VOCdevkit),另外一個resnet權重只是為了加快訓練,如圖:
這裡寫圖片描述
2.從VOC2007資料集中讀取資料,變成想要的資料格式
3.定義生成資料的迭代器
4.定義3個網路,一個是resnet共享卷積層,一個rpn層,一個分類器層
5.進入迭代,每次只訓練一張圖片
6.是否要進行圖片增強
7.根據特徵圖和定義框的比例,IOU等計算出y_train值,作為網路的label
8.訓練rpn層,輸出物體,和物體框的座標
9.然後再進行分類器層層的訓練

二.程式碼(關鍵部位已經給出註釋)

from __future__ import
division import random import pprint import sys import time import numpy as np from optparse import OptionParser import pickle from keras import backend as K from keras.optimizers import Adam, SGD, RMSprop from keras.layers import Input from keras.models import Model from keras_frcnn import config, data_generators from
keras_frcnn import losses as losses import keras_frcnn.roi_helpers as roi_helpers from keras.utils import generic_utils sys.setrecursionlimit(40000) parser = OptionParser() parser.add_option("-p", "--path", dest="train_path", help="Path to training data.") parser.add_option("-o", "--parser", dest="parser"
, help="Parser to use. One of simple or pascal_voc", default="pascal_voc") parser.add_option("-n", "--num_rois", type="int", dest="num_rois", help="Number of RoIs to process at once.", default=32) parser.add_option("--network", dest="network", help="Base network to use. Supports vgg or resnet50.", default='resnet50') parser.add_option("--hf", dest="horizontal_flips", help="Augment with horizontal flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--vf", dest="vertical_flips", help="Augment with vertical flips in training. (Default=false).", action="store_true", default=False) parser.add_option("--rot", "--rot_90", dest="rot_90", help="Augment with 90 degree rotations in training. (Default=false).", action="store_true", default=False) parser.add_option("--num_epochs", type="int", dest="num_epochs", help="Number of epochs.", default=2000) parser.add_option("--config_filename", dest="config_filename", help= "Location to store all the metadata related to the training (to be used when testing).", default="config.pickle") parser.add_option("--output_weight_path", dest="output_weight_path", help="Output path for weights.", default='./model_frcnn.hdf5') parser.add_option("--input_weight_path", dest="input_weight_path", help="Input path for weights. If not specified, will try to load default weights provided by keras.") (options, args) = parser.parse_args() if not options.train_path: # if filename is not given parser.error('Error: path to training data must be specified. Pass --path to command line') if options.parser == 'pascal_voc': from keras_frcnn.pascal_voc_parser import get_data elif options.parser == 'simple': from keras_frcnn.simple_parser import get_data else: raise ValueError("Command line option parser must be one of 'pascal_voc' or 'simple'") # pass the settings from the command line, and persist them in the config object C = config.Config() C.use_horizontal_flips = bool(options.horizontal_flips) C.use_vertical_flips = bool(options.vertical_flips) C.rot_90 = bool(options.rot_90) C.model_path = options.output_weight_path C.num_rois = int(options.num_rois) #有基於VGG和resnet兩種網路模型 if options.network == 'vgg': C.network = 'vgg' from keras_frcnn import vgg as nn elif options.network == 'resnet50': from keras_frcnn import resnet as nn C.network = 'resnet50' else: print('Not a valid model') raise ValueError # check if weight path was passed via command line if options.input_weight_path: C.base_net_weights = options.input_weight_path else: # set the path to weights based on backend and model C.base_net_weights = nn.get_weight_path() all_imgs, classes_count, class_mapping = get_data(options.train_path) print(len(all_imgs)) #所有圖片的資訊,圖片名稱,位置等 print(len(classes_count)) #dict,類別:數量,例如'chair': 1432 print(len(class_mapping)) #dict,各個類別對應的標籤向量,0-19,例如chair:0,car:1 #再加入'背景'這個類別 if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping # 將class_mapping中的key和value對調 inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) config_output_filename = options.config_filename with open(config_output_filename, 'wb') as config_f: pickle.dump(C,config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename)) # shuffle資料 random.shuffle(all_imgs) num_imgs = len(all_imgs) # 將all_imgs分為訓練集和測試集 train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'] val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) # 生成anchor data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') # data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, nn.get_img_output_length,K.image_dim_ordering(), mode='val') #檢視後端是th還是tf,糾正輸入方式 if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) #定義nn的輸入層,還有faster rcnn共享卷積層 shared_layers = nn.nn_base(img_input, trainable=True) print("shared_layers",shared_layers.shape) # define the RPN, built on the base layers #獲取anchor的個數,3重基準大小快,3種比例框,3*3=9 num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) #定義rpn層,return [x_class, x_regr, base_layers] rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True) #定義rpn模型的輸入和輸出一個框2分類(最後使用的sigmod而不是softmax)和框的迴歸 model_rpn = Model(img_input, rpn[:2]) #定義classifier的輸入和輸出 model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(C.base_net_weights)) model_rpn.load_weights(C.base_net_weights, by_name=True) model_classifier.load_weights(C.base_net_weights, by_name=True) except: print('Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses.class_loss_cls, losses.class_loss_regr(len(classes_count)-1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 1000 num_epochs = int(options.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor))/len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print('Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.') print("生成data_gen_train") #X為經過最小邊600的比例變換的原始影象,Y為[所有框位置的和類別(正例還是反例),所有框的前36層為位置和後36層(框和gt的比值)],img_data增強影象後的影象資訊 #那麼RPN的reg輸出也是比值 X, Y, img_data = next(data_gen_train) print(X.shape,Y[0].shape,Y[1].shape) loss_rpn = model_rpn.train_on_batch(X, Y) print("loss_rpn",len(loss_rpn)) print("loss_rpn0",loss_rpn[0]) print("loss_rpn1",loss_rpn[1]) print("loss_rpn2",loss_rpn[2]) P_rpn = model_rpn.predict_on_batch(X) # print("P_rpn_cls",P_rpn[0].reshape((P_rpn[0].shape[1],P_rpn[0].shape[2],P_rpn[0].shape[3]))[:,:,0]) print("P_rpn_cls",P_rpn[0].shape) print("P_rpn_reg",P_rpn[1].shape) #獲得最終選中的框 R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format #再對迴歸出來的框進行一次iou的計算,再一次過濾,只保留bg框和物體框 #X2 from (x1,y1,x2,y2) to (x,y,w,h) #Y1為每個框對應類別標籤,one-host編碼 #Y2為每個框和gt的比值,(x,x,160),前80表示框是否正確,後80為20個類別可能的框 X2, Y1, Y2, IouS = roi_helpers.calc_iou(R, img_data, C, class_mapping) print("X2",X2.shape) # print("X2_0",X2[0,0,:]) # print("X2_1",X2[0,1,:]) print("Y1",Y1.shape) print("Y2",Y2.shape) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue #選出正例還是反例的index,背景的為反例,物體為正例 neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) print("neg_samples",len(neg_samples[0])) print("pos_samples",len(pos_samples[0])) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) #num_rois=32,正例要求小於num_rois//2,其它全部由反例填充 if C.num_rois > 1: if len(pos_samples) < C.num_rois//2: selected_pos_samples = pos_samples.tolist() print("selected_pos_samples",len(selected_pos_samples)) else: selected_pos_samples = np.random.choice(pos_samples, C.num_rois//2, replace=False).tolist() print("selected_pos_samples",len(selected_pos_samples)) try: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() print("selected_neg_samples",len(selected_neg_samples)) except: selected_neg_samples = np.random.choice(neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() print("selected_neg_samples",len(selected_neg_samples)) sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) print("sel_samples",len(sel_samples)) print("sel_samples",sel_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) # P_classifier = model_classifier.predict([X, X2[:, sel_samples, :]]) # #[out_class, out_regr] # print("P_classifier_out_class",P_classifier[0].shape) # print("P_classifier_out_regr",P_classifier[1].shape) # import cv2 # cv2.waitKey(0) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format(mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss,curr_loss)) best_loss = curr_loss model_all.save_weights(C.model_path) break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.')