1. 程式人生 > >機器學習(四):BP神經網路_手寫數字識別_Python

機器學習(四):BP神經網路_手寫數字識別_Python

機器學習演算法Python實現

三、BP神經網路

1、神經網路model

  • 先介紹個三層的神經網路,如下圖所示

    • 輸入層(input layer)有三個units({x_0}為補上的bias,通常設為1
    • a_i^{(j)}表示第j層的第i個激勵,也稱為為單元unit
    • {\theta ^{(j)}}為第j層到第j+1層對映的權重矩陣,就是每條邊的權重
      ![enter description here][15]
  • 所以可以得到:

    • 隱含層:
      a_1^{(2)} = g(\theta _{10}^{(1)}{x_0} + \theta _{11}^{(1)}{x_1} + \theta _{12}^{(1)}{x_2} + \theta _{13}^{(1)}{x_3})
      a_2^{(2)} = g(\theta _{20}^{(1)}{x_0} + \theta _{21}^{(1)}{x_1} + \theta _{22}^{(1)}{x_2} + \theta _{23}^{(1)}{x_3})
      a_3^{(2)} = g(\theta _{30}^{(1)}{x_0} + \theta _{31}^{(1)}{x_1} + \theta _{32}^{(1)}{x_2} + \theta _{33}^{(1)}{x_3})
    • 輸出層
      {h_\theta }(x) = a_1^{(3)} = g(\theta _{10}^{(2)}a_0^{(2)} + \theta _{11}^{(2)}a_1^{(2)} + \theta _{12}^{(2)}a_2^{(2)} + \theta _{13}^{(2)}a_3^{(2)}) 其中,S型函式g(z) = \frac{1}{{1 + {e^{ - z}}}},也成為激勵函式
  • 可以看出{\theta ^{(1)}} 為3x4的矩陣,{\theta ^{(2)}}為1x4的矩陣
    • {\theta ^{(j)}} ==》j+1的單元數x(j層的單元數+1)

2、代價函式

  • 假設最後輸出的{h_\Theta }(x) \in {R^K},即代表輸出層有K個單元
  • J(\Theta ) =  - \frac{1}{m}\sum\limits_{i = 1}^m {\sum\limits_{k = 1}^K {[y_k^{(i)}\log {{({h_\Theta }({x^{(i)}}))}_k}} }  + (1 - y_k^{(i)})\log {(1 - {h_\Theta }({x^{(i)}}))_k}] 其中,{({h_\Theta }(x))_i}代表第i個單元輸出
  • 與邏輯迴歸的代價函式J(\theta ) =  - \frac{1}{m}\sum\limits_{i = 1}^m {[{y^{(i)}}\log ({h_\theta }({x^{(i)}}) + (1 - } {y^{(i)}})\log (1 - {h_\theta }({x^{(i)}})]
    差不多,就是累加上每個輸出(共有K個輸出)

3、正則化

  • L–>所有層的個數
  • {S_l}–>第l層unit的個數
  • 正則化後的代價函式
    ![enter description here][16]
    • \theta 共有L-1層,
    • 然後是累加對應每一層的theta矩陣,注意不包含加上偏置項對應的theta(0)
  • 正則化後的代價函式實現程式碼:
# 代價函式
def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):
    length = nn_params.shape[0] # theta的中長度
# 還原theta1和theta2 Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1) # np.savetxt("Theta1.csv",Theta1,delimiter=',') m = X.shape[0
] class_y = np.zeros((m,num_labels)) # 資料的y對應0-9,需要對映為0/1的關係 # 對映y for i in range(num_labels): class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以賦值 '''去掉theta1和theta2的第一列,因為正則化時從1開始''' Theta1_colCount = Theta1.shape[1] Theta1_x = Theta1[:,1:Theta1_colCount] Theta2_colCount = Theta2.shape[1] Theta2_x = Theta2[:,1:Theta2_colCount] # 正則化向theta^2 term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))) '''正向傳播,每次需要補上一列1的偏置bias''' a1 = np.hstack((np.ones((m,1)),X)) z2 = np.dot(a1,np.transpose(Theta1)) a2 = sigmoid(z2) a2 = np.hstack((np.ones((m,1)),a2)) z3 = np.dot(a2,np.transpose(Theta2)) h = sigmoid(z3) '''代價''' J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/m return np.ravel(J)

4、反向傳播BP

  • 上面正向傳播可以計算得到J(θ),使用梯度下降法還需要求它的梯度
  • BP反向傳播的目的就是求代價函式的梯度
  • 假設4層的神經網路,\delta _{\text{j}}^{(l)}記為–>l層第j個單元的誤差
    • \delta _{\text{j}}^{(4)} = a_j^{(4)} - {y_i}《===》{\delta ^{(4)}} = {a^{(4)}} - y(向量化)
    • {\delta ^{(3)}} = {({\theta ^{(3)}})^T}{\delta ^{(4)}}.*{g^}({a^{(3)}})
    • {\delta ^{(2)}} = {({\theta ^{(2)}})^T}{\delta ^{(3)}}.*{g^}({a^{(2)}})
    • 沒有{\delta ^{(1)}},因為對於輸入沒有誤差
  • 因為S型函式{\text{g(z)}}的倒數為:{g^}(z){\text{ = g(z)(1 - g(z))}},所以上面的{g^}({a^{(3)}}){g^}({a^{(2)}})可以在前向傳播中計算出來

  • 反向傳播計算梯度的過程為:

    • \Delta _{ij}^{(l)} = 0\Delta 是大寫的\delta
    • for i=1-m:
      -{a^{(1)}} = {x^{(i)}}
      -正向傳播計算{a^{(l)}}(l=2,3,4…L)
      -反向計算{\delta ^{(L)}}{\delta ^{(L - 1)}}{\delta ^{(2)}}
      -\Delta _{ij}^{(l)} = \Delta _{ij}^{(l)} + a_j^{(l)}{\delta ^{(l + 1)}}
      -D_{ij}^{(l)} = \frac{1}{m}\Delta _{ij}^{(l)} + \lambda \theta _{ij}^l\begin{array}{c}    {}& {(j \ne 0)}  \end{array}
      D_{ij}^{(l)} = \frac{1}{m}\Delta _{ij}^{(l)} + \lambda \theta _{ij}^lj = 0\begin{array}{c}    {}& {j = 0}  \end{array}
  • 最後\frac{{\partial J(\Theta )}}{{\partial \Theta _{ij}^{(l)}}} = D_{ij}^{(l)},即得到代價函式的梯度

  • 實現程式碼:
# 梯度
def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):
    length = nn_params.shape[0]
    Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)
    Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)
    m = X.shape[0]
    class_y = np.zeros((m,num_labels))      # 資料的y對應0-9,需要對映為0/1的關係    
    # 對映y
    for i in range(num_labels):
        class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以賦值

    '''去掉theta1和theta2的第一列,因為正則化時從1開始'''
    Theta1_colCount = Theta1.shape[1]    
    Theta1_x = Theta1[:,1:Theta1_colCount]
    Theta2_colCount = Theta2.shape[1]    
    Theta2_x = Theta2[:,1:Theta2_colCount]

    Theta1_grad = np.zeros((Theta1.shape))  #第一層到第二層的權重
    Theta2_grad = np.zeros((Theta2.shape))  #第二層到第三層的權重

    Theta1[:,0] = 0;
    Theta2[:,0] = 0;
    '''正向傳播,每次需要補上一列1的偏置bias'''
    a1 = np.hstack((np.ones((m,1)),X))
    z2 = np.dot(a1,np.transpose(Theta1))
    a2 = sigmoid(z2)
    a2 = np.hstack((np.ones((m,1)),a2))
    z3 = np.dot(a2,np.transpose(Theta2))
    h  = sigmoid(z3)

    '''反向傳播,delta為誤差,'''
    delta3 = np.zeros((m,num_labels))
    delta2 = np.zeros((m,hidden_layer_size))
    for i in range(m):
        delta3[i,:] = h[i,:]-class_y[i,:]
        Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))
        delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])
        Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))

    '''梯度'''
    grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/m
    return np.ravel(grad)

5、BP可以求梯度的原因

  • 實際是利用了鏈式求導法則
  • 因為下一層的單元利用上一層的單元作為輸入進行計算
  • 大體的推導過程如下,最終我們是想預測函式與已知的y非常接近,求均方差的梯度沿著此梯度方向可使代價函式最小化。可對照上面求梯度的過程。
    ![enter description here][17]
  • 求誤差更詳細的推到過程:
    ![enter description here][18]

6、梯度檢查

  • 檢查利用BP求的梯度是否正確
  • 利用導數的定義驗證:
    \frac{{dJ(\theta )}}{{d\theta }} \approx \frac{{J(\theta  + \varepsilon ) - J(\theta  - \varepsilon )}}{{2\varepsilon }}
  • 求出來的數值梯度應該與BP求出的梯度非常接近
  • 驗證BP正確後就不需要再執行驗證梯度的演算法了
  • 實現程式碼:
# 檢驗梯度是否計算正確
# 檢驗梯度是否計算正確
def checkGradient(Lambda = 0):
    '''構造一個小型的神經網路驗證,因為數值法計算梯度很浪費時間,而且驗證正確後之後就不再需要驗證了'''
    input_layer_size = 3
    hidden_layer_size = 5
    num_labels = 3
    m = 5
    initial_Theta1 = debugInitializeWeights(input_layer_size,hidden_layer_size); 
    initial_Theta2 = debugInitializeWeights(hidden_layer_size,num_labels)
    X = debugInitializeWeights(input_layer_size-1,m)
    y = 1+np.transpose(np.mod(np.arange(1,m+1), num_labels))# 初始化y

    y = y.reshape(-1,1)
    nn_params = np.vstack((initial_Theta1.reshape(-1,1),initial_Theta2.reshape(-1,1)))  #展開theta 
    '''BP求出梯度'''
    grad = nnGradient(nn_params, input_layer_size, hidden_layer_size, 
                     num_labels, X, y, Lambda)  
    '''使用數值法計算梯度'''
    num_grad = np.zeros((nn_params.shape[0]))
    step = np.zeros((nn_params.shape[0]))
    e = 1e-4
    for i in range(nn_params.shape[0]):
        step[i] = e
        loss1 = nnCostFunction(nn_params-step.reshape(-1,1), input_layer_size, hidden_layer_size, 
                              num_labels, X, y, 
                              Lambda)
        loss2 = nnCostFunction(nn_params+step.reshape(-1,1), input_layer_size, hidden_layer_size, 
                              num_labels, X, y, 
                              Lambda)
        num_grad[i] = (loss2-loss1)/(2*e)
        step[i]=0
    # 顯示兩列比較
    res = np.hstack((num_grad.reshape(-1,1),grad.reshape(-1,1)))
    print res

7、權重的隨機初始化

  • 神經網路不能像邏輯迴歸那樣初始化theta0,因為若是每條邊的權重都為0,每個神經元都是相同的輸出,在反向傳播中也會得到同樣的梯度,最終只會預測一種結果。
  • 所以應該初始化為接近0的數
  • 實現程式碼
# 隨機初始化權重theta
def randInitializeWeights(L_in,L_out):
    W = np.zeros((L_out,1+L_in))    # 對應theta的權重
    epsilon_init = (6.0/(L_out+L_in))**0.5
    W = np.random.rand(L_out,1+L_in)*2*epsilon_init-epsilon_init # np.random.rand(L_out,1+L_in)產生L_out*(1+L_in)大小的隨機矩陣
    return W

8、預測

  • 正向傳播預測結果
  • 實現程式碼
# 預測
def predict(Theta1,Theta2,X):
    m = X.shape[0]
    num_labels = Theta2.shape[0]
    #p = np.zeros((m,1))
    '''正向傳播,預測結果'''
    X = np.hstack((np.ones((m,1)),X))
    h1 = sigmoid(np.dot(X,np.transpose(Theta1)))
    h1 = np.hstack((np.ones((m,1)),h1))
    h2 = sigmoid(np.dot(h1,np.transpose(Theta2)))

    '''
    返回h中每一行最大值所在的列號
    - np.max(h, axis=1)返回h中每一行的最大值(是某個數字的最大概率)
    - 最後where找到的最大概率所在的列號(列號即是對應的數字)
    '''
    #np.savetxt("h2.csv",h2,delimiter=',')
    p = np.array(np.where(h2[0,:] == np.max(h2, axis=1)[0]))  
    for i in np.arange(1, m):
        t = np.array(np.where(h2[i,:] == np.max(h2, axis=1)[i]))
        p = np.vstack((p,t))
    return p 

9、輸出結果

  • 梯度檢查:
    ![enter description here][19]
  • 隨機顯示100個手寫數字
    ![enter description here][20]
  • 顯示theta1權重
    ![enter description here][21]
  • 訓練集預測準確度
    ![enter description here][22]
  • 歸一化後訓練集預測準確度
    ![enter description here][23]