1. 程式人生 > >基於tensorflow + Vgg16進行影象分類識別

基於tensorflow + Vgg16進行影象分類識別

1. VGG-16介紹

vgg是在Very Deep Convolutional Networks for Large-Scale Image Recognition期刊上提出的。模型可以達到92.7%的測試準確度,在ImageNet的前5位。它的資料集包括1400萬張影象,1000個類別。
vgg-16是一種深度卷積神經網路模型,16表示其深度,在影象分類等任務中取得了不錯的效果。
vgg16 的巨集觀結構圖如下。程式碼定義在tensorflow的vgg16.py檔案 。注意,包括一個預處理層,使用RGB影象在0-255範圍內的畫素值減去平均值(在整個ImageNet影象訓練集計算)。
這裡寫圖片描述

2. 檔案組成

模型權重 - vgg16_weights.npz
TensorFlow模型- vgg16.py
類名(輸出模型到類名的對映) - imagenet_classes.py
示例圖片輸入 - laska.png
我們使用特定的工具轉換了原作者在GitHub profile上公開可用的Caffe權重,並做了一些後續處理,以確保模型符合TensorFlow標準。最終實現可用的權重檔案vgg16_weights.npz
下載所有的檔案到同一資料夾下,然後執行 python vgg16.py
這裡寫圖片描述
- vgg16.py檔案程式碼:

import tensorflow as tf
import
numpy as np from scipy.misc import imread, imresize from imagenet_classes import class_names class vgg16: def __init__(self, imgs, weights=None, sess=None): self.imgs = imgs self.convlayers() self.fc_layers() self.probs = tf.nn.softmax(self.fc3l) if weights is
not None and sess is not None: self.load_weights(weights, sess) def convlayers(self): self.parameters = [] # zero-mean input with tf.name_scope('preprocess') as scope: mean = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32, shape=[1, 1, 1, 3], name='img_mean') images = self.imgs-mean # conv1_1 with tf.name_scope('conv1_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 3, 64], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv1_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv1_2 with tf.name_scope('conv1_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 64], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv1_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv1_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool1 self.pool1 = tf.nn.max_pool(self.conv1_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool1') # conv2_1 with tf.name_scope('conv2_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv2_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv2_2 with tf.name_scope('conv2_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 128], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv2_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv2_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool2 self.pool2 = tf.nn.max_pool(self.conv2_2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool2') # conv3_1 with tf.name_scope('conv3_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 128, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv3_2 with tf.name_scope('conv3_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv3_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv3_3 with tf.name_scope('conv3_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv3_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv3_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool3 self.pool3 = tf.nn.max_pool(self.conv3_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool3') # conv4_1 with tf.name_scope('conv4_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool3, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv4_2 with tf.name_scope('conv4_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv4_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv4_3 with tf.name_scope('conv4_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv4_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv4_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool4 self.pool4 = tf.nn.max_pool(self.conv4_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') # conv5_1 with tf.name_scope('conv5_1') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.pool4, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_1 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv5_2 with tf.name_scope('conv5_2') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv5_1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_2 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # conv5_3 with tf.name_scope('conv5_3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 512, 512], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(self.conv5_2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[512], dtype=tf.float32), trainable=True, name='biases') out = tf.nn.bias_add(conv, biases) self.conv5_3 = tf.nn.relu(out, name=scope) self.parameters += [kernel, biases] # pool5 self.pool5 = tf.nn.max_pool(self.conv5_3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name='pool4') def fc_layers(self): # fc1 with tf.name_scope('fc1') as scope: shape = int(np.prod(self.pool5.get_shape()[1:])) fc1w = tf.Variable(tf.truncated_normal([shape, 4096], dtype=tf.float32, stddev=1e-1), name='weights') fc1b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases') pool5_flat = tf.reshape(self.pool5, [-1, shape]) fc1l = tf.nn.bias_add(tf.matmul(pool5_flat, fc1w), fc1b) self.fc1 = tf.nn.relu(fc1l) self.parameters += [fc1w, fc1b] # fc2 with tf.name_scope('fc2') as scope: fc2w = tf.Variable(tf.truncated_normal([4096, 4096], dtype=tf.float32, stddev=1e-1), name='weights') fc2b = tf.Variable(tf.constant(1.0, shape=[4096], dtype=tf.float32), trainable=True, name='biases') fc2l = tf.nn.bias_add(tf.matmul(self.fc1, fc2w), fc2b) self.fc2 = tf.nn.relu(fc2l) self.parameters += [fc2w, fc2b] # fc3 with tf.name_scope('fc3') as scope: fc3w = tf.Variable(tf.truncated_normal([4096, 1000], dtype=tf.float32, stddev=1e-1), name='weights') fc3b = tf.Variable(tf.constant(1.0, shape=[1000], dtype=tf.float32), trainable=True, name='biases') self.fc3l = tf.nn.bias_add(tf.matmul(self.fc2, fc3w), fc3b) self.parameters += [fc3w, fc3b] def load_weights(self, weight_file, sess): weights = np.load(weight_file) keys = sorted(weights.keys()) for i, k in enumerate(keys): print i, k, np.shape(weights[k]) sess.run(self.parameters[i].assign(weights[k])) if __name__ == '__main__': sess = tf.Session() imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16(imgs, 'vgg16_weights.npz', sess) img1 = imread('laska.png', mode='RGB') img1 = imresize(img1, (224, 224)) prob = sess.run(vgg.probs, feed_dict={vgg.imgs: [img1]})[0] preds = (np.argsort(prob)[::-1])[0:5] for p in preds: #print class_names[p], prob[p] print("class_name {}: step {}".format(class_names[p], prob[p]))

執行,測試

測試1:

輸入圖片為laska.png
這裡寫圖片描述
執行結果:

2018-03-23 11:04:38.311802: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 11:04:38.311873: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
31 fc8_b (1000,)
class_name **weasel**: step 0.693385839462
class_name polecat, fitch, foulmart, foumart, Mustela putorius: step 0.175387635827
class_name mink: step 0.12208583951
class_name black-footed ferret, ferret, Mustela nigripes: step 0.00887066219002
class_name otter: step 0.000121083263366

分類結果為weasel

測試2:
輸入圖片為多場景
這裡寫圖片描述
執行結果為:

2018-03-23 11:15:22.718228: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 11:15:22.718297: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
31 fc8_b (1000,)
class_name alp: step 0.830908000469
class_name church, church building: step 0.0817768126726
class_name castle: step 0.024959910661
class_name valley, vale: step 0.0158758834004
class_name monastery: step 0.0100631769747

分類結果把高山,教堂,城堡,山谷,修道院都識別出來了,效果非常不錯,雖然各種精度不高,但是類別是齊全的。
測試3:
輸入圖片為
這裡寫圖片描述
執行結果為

2018-03-23 11:34:50.490069: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 11:34:50.490137: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
31 fc8_b (1000,)
class_name cup: step 0.543631911278
class_name coffee mug: step 0.364796578884
class_name pitcher, ewer: step 0.0259610358626
class_name eggnog: step 0.0117611540481
class_name water jug: step 0.00806392729282

分類結果為cup
測試4:
輸入圖片為
這裡寫圖片描述
執行結果為

2018-03-23 11:37:23.573090: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 11:37:23.573159: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
31 fc8_b (1000,)
class_name cellular telephone, cellular phone, cellphone, cell, mobile phone: step 0.465327292681
class_name iPod: step 0.10543012619
class_name radio, wireless: step 0.0810257941484
class_name hard disc, hard disk, fixed disk: step 0.0789099931717
class_name modem: step 0.0603163056076

分類結果為 cellular telephone
測試5:
輸入圖片為
這裡寫圖片描述
執行結果為

2018-03-23 11:40:40.956946: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2018-03-23 11:40:40.957016: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
0 conv1_1_W (3, 3, 3, 64)
1 conv1_1_b (64,)
2 conv1_2_W (3, 3, 64, 64)
3 conv1_2_b (64,)
4 conv2_1_W (3, 3, 64, 128)
5 conv2_1_b (128,)
6 conv2_2_W (3, 3, 128, 128)
7 conv2_2_b (128,)
8 conv3_1_W (3, 3, 128, 256)
9 conv3_1_b (256,)
10 conv3_2_W (3, 3, 256, 256)
11 conv3_2_b (256,)
12 conv3_3_W (3, 3, 256, 256)
13 conv3_3_b (256,)
14 conv4_1_W (3, 3, 256, 512)
15 conv4_1_b (512,)
16 conv4_2_W (3, 3, 512, 512)
17 conv4_2_b (512,)
18 conv4_3_W (3, 3, 512, 512)
19 conv4_3_b (512,)
20 conv5_1_W (3, 3, 512, 512)
21 conv5_1_b (512,)
22 conv5_2_W (3, 3, 512, 512)
23 conv5_2_b (512,)
24 conv5_3_W (3, 3, 512, 512)
25 conv5_3_b (512,)
26 fc6_W (25088, 4096)
27 fc6_b (4096,)
28 fc7_W (4096, 4096)
29 fc7_b (4096,)
30 fc8_W (4096, 1000)
31 fc8_b (1000,)
class_name water bottle: step 0.75726544857
class_name pop bottle, soda bottle: step 0.0976340323687
class_name nipple: step 0.0622750669718
class_name water jug: step 0.0233819428831
class_name soap dispenser: step 0.0179366543889

分類結果為 water bottle
參考文件