1. 程式人生 > >Tensorflow測試Mnist手寫資料集

Tensorflow測試Mnist手寫資料集

測試Minist 資料集

#!/usr/bin/python
import tensorflow as tf
import sys
from tensorflow.examples.tutorials.mnist import input_data
#定義一個函式,用於初始化所有的權值 W
def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)
#定義一個函式,用於初始化所有的偏置項 b
def bias_variable(shape)
:
initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) #定義一個函式,用於構建卷積層 def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #定義一個函式,用於構建池化層 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') #下載並載入資料
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #資料與標籤的佔位 x = tf.placeholder("float", shape=[None, 784]) y_ = tf.placeholder("float", shape=[None, 10]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) W_conv1 = weight_variable([5, 5, 1, 32]) b_conv1 = bias_variable([32
]) #構建網路 x_image = tf.reshape(x, [-1, 28, 28, 1]) #轉換輸入資料shape,以便於用於網路中 h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) #第一個卷積層 h_pool1 = max_pool_2x2(h_conv1) #第一個池化層 #初始化權重和偏置 W_conv2 = weight_variable([5, 5, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) #第二個卷積層 h_pool2 = max_pool_2x2(h_conv2) #第二個池化層 # Now image size is reduced to 7*7 W_fc1 = weight_variable([7 * 7 * 64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) #reshape成向量 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #第一個全連線層 keep_prob = tf.placeholder("float") h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #dropout層 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) #softmax迴歸,得到預測概率 y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #softmax層 #求交叉熵得到殘差 cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv)) #交叉熵 train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy) #梯度下降法 #train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #精確度計算 # tf.session() sess = tf.InteractiveSession() sess.run(tf.initialize_all_variables()) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) #訓練,迭代1000次 for i in range(10000): batch = mnist.train.next_batch(50) if i%100 == 0: train_accuracy = accuracy.eval(feed_dict={ x:batch[0], y_: batch[1], keep_prob: 1.0}) print( "step %d, training accuracy %.3f"%(i, train_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print ("Training finished") print( "test accuracy %.3f" % accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))