1. 程式人生 > >【黑金原創教程】【FPGA那些事兒-驅動篇I 】【實驗一】流水燈模組

【黑金原創教程】【FPGA那些事兒-驅動篇I 】【實驗一】流水燈模組

實驗一:流水燈模組

對於發展商而言,動土儀式無疑是最重要的任務。為此,流水燈實驗作為低階建模II的動土儀式再適合不過了。廢話少說,我們還是開始實驗吧。

clip_image002

圖1.1 實驗一建模圖。

如圖1.1 所示,實驗一有名為 led_funcmod的功能模組。如果無視環境訊號(時鐘訊號還有復位訊號),該功能模組只有一組輸出端,亦即4位LED訊號。接下來讓我們來看具體內容:

led_funcmod.v
1.    module led_funcmod
2.    (
3.         input CLOCK, RESET,
4.         output [3:0]LED
5.    );

以上內容為出入端宣告。

6.         parameter T1S = 26'd50_000_000; //1Hz
7.         parameter T100MS = 26'd5_000_000; //10Hz
8.         parameter T10MS = 26'd500_000; //100Hz
9.         parameter T1MS = 26'd50_000; //1000Hz
10.         

以上內容為常量宣告。分別是1秒至1毫秒。

11.         reg [3:0]i;
12.         reg [25:0]C1;
13.         reg [3:0]D;
14.         reg [25:0]T;
15.         reg [3:0]isTag;
16.         
17.         always @ ( posedge CLOCK or negedge RESET )
18.             if( !RESET )
19.                  begin
20.                         i <= 4'd0;
21.                         C1 <= 26'd0;
22.                         D <= 4'b0001;
23.                         T <= T1S;
24.                         isTag <= 4'b0001;
25.                    end
26.              else

以上內容是相關的暫存器宣告以及復位操作。暫存器i用來指向步驟,暫存器C1用來計數,暫存器D用來暫存結果和驅動輸出,暫存器T用來暫存計數量,isTag則用來暫存延遲標籤。

27.                case( i )
28.                
29.                      0:
30.                      if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
31.                      else begin C1 <= C1 + 1'b1; D <= 4'b0001; end
32.                      
33.                      1:
34.                      if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
35.                      else begin C1 <= C1 + 1'b1; D <= 4'b0010; end
36.                      
37.                      2:
38.                      if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
39.                      else begin C1 <= C1 + 1'b1; D <= 4'b0100; end
40.                      
41.                      3:
42.                      if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
43.                      else begin C1 <= C1 + 1'b1; D <= 4'b1000; end
44.                      
45.                      4:
46.                      begin isTag <= { isTag[2:0], isTag[3] }; i <= i + 1'b1; end
47.                      
48.                      5:
49.                      if( isTag[0] ) begin T <= T1S; i <= 4'd0; end
50.                      else if( isTag[1] ) begin T <= T100MS; i <= 4'd0; end
51.                      else if( isTag[2] ) begin T <= T10MS; i <= 4'd0; end
52.                      else if( isTag[3] ) begin T <= T1MS; i <= 4'd0; end 
53.                      
54.              endcase        
55.        
56.        assign LED = D;
57.            
58.    endmodule

以上內容為是核心操作以及輸出驅動宣告。步驟0~3用來實現流水燈效果。最初,每個步驟的停留時間是 1秒,然後步驟0~3按順序執行便會產生流水效果。步驟4是用來切換模式,步驟5則是根據isTag的內容再為 T暫存器載入不同的延遲內容,如 [0] 延遲1秒,[1] 延遲100毫妙,[2] 延遲10毫妙,[3] 延遲1毫妙。預設下為模式0(第24行),既延遲1秒(第23行)。

這個實驗所在乎的內容根本不是實驗結果而是低階建模II本身。假若比較《建模篇》的流水實驗,低階建模I與低階建模II之間是有明顯的差距。首先,低階建模II再也不見計數器或者定時器等周邊操作。再者,低階建模II的整合度很高,例如步驟0~3:

1.           0:
2.          if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
3.          else begin C1 <= C1 + 1'b1; D <= 4'b0001; end 
4.          1:
5.          if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
6.          else begin C1 <= C1 + 1'b1; D<= 4'b0010; end          
7.          2:
8.          if( C1 ==T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
9.          else begin C1 <= C1 + 1'b1; D <= 4'b0100; end          
10.          3:
11.          if( C1 == T -1) begin C1 <= 26'd0; i <= i + 1'b1; end
12.          else begin C1 <= C1 + 1'b1; D <= 4'b1000; end

程式碼1.1

內容如程式碼1.1所示,步驟0~3每個步驟示意一段完整的小操作,例如步驟0為4’b0001保持一段時間,步驟1為4’b0010保持一段時間,步驟2~3也是如此。其中 -1也考慮了步驟切換的時間。假設流水間隔要求1毫妙,那麼每個步驟都會準確無誤停留50000個時鐘。事實上,步驟0也可以換成比較方便的寫法,如程式碼1.2所示:

1.        reg [3:0] D = 4’b0001;  
2.        ......
3.        0,1,2,3:
4.        if( C1 == T -1) begin D <= { D[2:0], D[3] }; C1 <= 26'd0; i <= i + 1'b1; end
5.        else begin C1 <= C1 + 1'b1; end

程式碼1.2

程式碼1.2表示,只要暫存器D準備好初值,例如 4’b0001,那麼步驟0~3都可以共享同樣的操作,如此一來會大大減少行數,節省空間。好奇的同學一定覺得疑惑,既然程式碼1.2的寫法那麼方便,反之筆者為何要選擇程式碼1.1的寫法呢?原因很單純,那是為了清晰模組內容,以致我們容易腦補時序。感覺上,兩者雖然都差不多,但是我們只要仔看,我們便會發現 ... 程式碼1.2它雖然書寫方便,可是細節模糊而且內容也不直觀。

在此,筆者需要強調!低階建模II雖然有整合技巧讓操作變得更加便捷,不過比起整合它更加註重表達能力以及清晰度。這樣做的關鍵是為了發揮主動思想,以便擺脫無謂的模擬。所以說,如果讀者想和低階建模II作朋友,建模之前應該優先考慮內容的清晰度,而不是內容的精簡性。如果內容即精簡又直觀,這種情況當然是最好的結果。

至於實驗一是沒有模擬的必要,因為內容足夠直白,這種程度足以腦補時序。最後筆者還要說道,實驗一雖然沒有什麼學習的價值,但是實驗一要表達的資訊也非常清楚,即低階建模II是注重清晰,直觀的建模技巧。此外,實驗一也可以作為學習的熱身。

相關推薦

黑金原創教程FPGA那些事兒-驅動I 實驗流水模組

實驗一:流水燈模組 對於發展商而言,動土儀式無疑是最重要的任務。為此,流水燈實驗作為低階建模II的動土儀式再適合不過了。廢話少說,我們還是開始實驗吧。 圖1.1 實驗一建模圖。 如圖1.1 所示,實驗一有名為 led_funcmod的功能模組。如果無視環境訊號(時鐘訊號還有復位訊號),該功能模組只有

黑金原創教程FPGA那些事兒-驅動I 連載導讀

前言: 無數晝夜的來回輪替以後,這本《驅動篇I》終於編輯完畢了,筆者真的感動到連鼻涕也流下來。所謂驅動就是認識硬體,還有前期建模。雖然《驅動篇I》的硬體都是我們熟悉的老友記,例如UART,VGA等,但是《驅動篇I》貴就貴在建模技巧的昇華,亦即低階建模II。 話說低階建模II,讀過《建模篇》的朋友多少也會面

黑金原創教程FPGA那些事兒-驅動I 實驗三:按鍵模組② — 點選與長點選

實驗三:按鍵模組② — 點選與長點選 實驗二我們學過按鍵功能模組的基礎內容,其中我們知道按鍵功能模組有如下操作: l 電平變化檢測; l 過濾抖動; l 產生有效按鍵。 實驗三我們也會z執行同樣的事情,不過卻是產生不一樣的有效按鍵: l 按下有效(點選); l 長按下有效(長點選)。 圖3

黑金原創教程FPGA那些事兒-驅動I 實驗二:按鍵模組

實驗二:按鍵模組① - 消抖 按鍵消抖實驗可謂是經典中的經典,按鍵消抖實驗雖曾在《建模篇》出現過,而且還惹來一堆麻煩。事實上,筆者這是在刁難各位同學,好讓對方的慣性思維短路一下,但是慘遭口水攻擊 ... 面對它,筆者宛如被甩的男人,對它又愛又恨。不管怎麼樣,如今 I’ll be back,筆者再也不會重複一

黑金原創教程FPGA那些事兒-驅動I 實驗六:數碼管模組

實驗六:數碼管模組 有關數碼管的驅動,想必讀者已經學爛了 ... 不過,作為學習的新儀式,再爛的東西也要溫故知新,不然學習就會不健全。黑金開發板上的數碼管資源,由始至終都沒有改變過,筆者因此由身懷念。為了點亮多位數碼管從而顯示數字,一般都會採用動態掃描,然而有關動態掃描的資訊請怒筆者不再重複。在此,同樣也是

黑金原創教程FPGA那些事兒-驅動I 實驗四:按鍵模組③ — 單擊與雙擊

實驗四:按鍵模組③ — 單擊與雙擊 實驗三我們建立了“點選”還有“長點選”等有效按鍵的多功能按鍵模組。在此,實驗四同樣也是建立多功能按鍵模組,不過卻有不同的有效按鍵。實驗四的按鍵功能模組有以下兩項有效按鍵: l 單擊(按下有效); l 雙擊(連續按下兩下有效)。 圖4.1 單擊有效按鍵,時序示意圖

黑金原創教程FPGA那些事兒-驅動I 實驗五:按鍵模組④ — 點選,長點選,雙擊

實驗五:按鍵模組④ — 點選,長點選,雙擊 實驗二至實驗四,我們一共完成如下有效按鍵: l 點選(按下有效) l 點選(釋放有效) l 長擊(長按下有效) l 雙擊(連續按下有效) 然而,不管哪個實驗都是隻有兩項“功能”的按鍵模組而已,如今我們要建立三項“功能”的按鍵模組,亦即點選(按下有效),長

黑金原創教程FPGA那些事兒-驅動I 原創教程連載導讀連載完成,共二十九章

前言: 無數晝夜的來回輪替以後,這本《驅動篇I》終於編輯完畢了,筆者真的感動到連鼻涕也流下來。所謂驅動就是認識硬體,還有前期建模。雖然《驅動篇I》的硬體都是我們熟悉的老友記,例如UART,VGA等,但是《驅動篇I》貴就貴在建模技巧的昇華,亦即低階建模II。 話說低階建模II,讀過《建模篇》的朋友多少也會面

黑金原創教程FPGA那些事兒-驅動I 實驗二十:SDRAM模組④ — 頁讀寫 β

實驗二十一:SDRAM模組④ — 頁讀寫 β 未進入主題之前,讓我們先來談談一些重要的體外話。《整合篇》之際,筆者曾經比擬Verilog如何模仿for迴圈,我們知道for迴圈是順序語言的產物,如果Verilog要實現屬於自己的for迴圈,那麼它要考慮的東西除了步驟以外,還有非常關鍵的時鐘。 for(

黑金原創教程FPGA那些事兒-驅動I 實驗十:PS/2模組④ — 普通滑鼠

實驗十:PS/2模組④ — 普通滑鼠 學習PS/2鍵盤以後,接下來就要學習 PS/2 滑鼠。PS/2滑鼠相較PS/2鍵盤,驅動難度稍微高了一點點,因為FPGA(從機)不僅僅是從PS/2滑鼠哪裡讀取資料,FPGA還要往滑鼠裡寫資料 ... 反之,FPGA只要對PS/2鍵盤讀取資料即可。然而,最傷腦筋的地方就在

黑金原創教程FPGA那些事兒-驅動I 實驗十八:SDRAM模組① — 單字讀寫

實驗十八:SDRAM模組① — 單字讀寫 筆者與SDRAM有段不短的孽緣,它作為冤魂日夜不斷糾纏筆者。筆者嘗試過許多方法將其退散,不過屢試屢敗的筆者,最終心情像橘子一樣橙。《整合篇》之際,筆者曾經大戰幾回兒,不過內容都是點到即止。最近它破蠱而出,日夜不停:“好~痛苦!好~痛苦!”地呻吟著,嚇得筆者不敢半夜如

黑金原創教程FPGA那些事兒-驅動I 實驗二十七:TFT模組

實驗二十七:TFT模組 - 顯示 所謂TFT(Thin Film Transistor)就是眾多LCD當中,其中一種支援顏色的LCD,相較古老的點陣LCD(12864笑),它可謂高階了。黑金的TFT LCD除了320×240大小以外,內建SSD1289控制器,同時也是獨立模組。事實上,無論是驅動點陣LCD還

黑金原創教程FPGA那些事兒-驅動I 實驗十三:串列埠模組② — 接收

實驗十三:串列埠模組② — 接收 我們在實驗十二實現了串列埠傳送,然而這章實驗則要實現串列埠接收 ... 在此,筆者也會使用其它思路實現串列埠接收。 圖13.1 模組之間的資料傳輸。 假設我們不考慮波特率,而且一幀資料之間的傳輸也只是發生在FPGA之間,即兩隻模組之間互轉,並且兩塊模組都使用相同的時

黑金原創教程FPGA那些事兒-驅動I 實驗七:PS/2模組① — 鍵盤

實驗七:PS/2模組① — 鍵盤 實驗七依然也是熟爛的PS/2鍵盤。相較《建模篇》的PS/2鍵盤實驗,實驗七實除了實現基本的驅動以外,我們還要深入解PS/2時序,還有PS/2鍵盤的行為。不過,為了節省珍貴的頁數,怒筆者不再重複有關PS/2的基礎內容,那些不曉得的讀者請複習《建模篇》或者自行谷歌一下。 市場

黑金原創教程FPGA那些事兒-驅動I 實驗九:PS/2模組③ — 鍵盤與多組合鍵

實驗九:PS/2模組③ — 鍵盤與多組合鍵 筆者曾經說過,通碼除了單位元組以外,也有雙位元組通碼,而且雙位元組通碼都是 8’hE0開頭,別名又是 E0按鍵。常見的的E0按鍵有,<↑>,<↓>,<←>,<→>,<HOME>,<PRTSC>

黑金原創教程FPGA那些事兒-驅動I 實驗二十五:SDHC模組

實驗二十五:SDHC模組 筆者曾經說過,SD卡發展至今已經衍生許多版本,實驗二十四就是針對版本SDV1.×的SD卡。實驗二十四也說過,CMD24還有CMD17會故意偏移地址29,讓原本範圍指向從原本的232 變成 223,原因是SD卡讀寫一次都有512個位元組。為此我們可以這樣計算: SDV1.x = 2

黑金原創教程FPGA那些事兒-驅動I 實驗二十:SDRAM模組③ — 頁讀寫 α

實驗二十:SDRAM模組③ — 頁讀寫 α 完成單字讀寫與多字讀寫以後,接下來我們要實驗頁讀寫。醜話當前,實驗二十的頁讀寫只是實驗性質的東西,其中不存在任何實用價值,筆者希望讀者可以把它當成頁讀寫的熱身運動。 表示20.1 Mode Register的內容。 Mode Register

黑金原創教程FPGA那些事兒-驅動I 實驗二十八:TFT模組

實驗二十八:TFT模組 - 觸屏 讀者在上一個實驗所玩弄過的 TFT LCD模組,除了顯示大小為 320 × 240,顏色為16位RGB的影象資訊以外,它還支援觸屏。所謂觸屏就是滑鼠還有鍵盤以外的輸入手段,例如現在流行平板還有智慧手機,觸屏輸入對我們來說,已經成為日常的一部分。描述語言一門偏向硬體的語言

黑金原創教程FPGA那些事兒-驅動I 實驗二十二:SDRAM模組⑤ — FIFO讀寫

經過漫長的戰鬥以後,我們終於來到最後。對於普通人而言,頁讀寫就是一名戰士的墓碑(最終戰役) ... 然而,怕死的筆者想透過這個實驗告訴讀者,旅程的終點就是旅程的起點。一直以來,筆者都在煩惱“SDRAM是否應該成為儲存類?”SDRAM作為一介儲存資源(儲存器),它的好處就是大容量空間,壞處則就是麻煩的控制規

黑金原創教程FPGA那些事兒-驅動I 實驗十四:儲存模組

實驗十四比起動手筆者更加註重原理,因為實驗十四要討論的東西,不是其它而是低階建模II之一的模組類,即儲存模組。接觸順序語言之際,“儲存”不禁讓人聯想到變數或者陣列,結果它們好比資料的暫存空間。 1. int main() 2. { 3. int VarA; 4.