1. 程式人生 > >C++11新特性之 Move semantics(移動語義)

C++11新特性之 Move semantics(移動語義)

按值傳遞的意義是什麼?
當一個函式的引數按值傳遞時,這就會進行拷貝。當然,編譯器懂得如何去拷貝。
而對於我們自定義的型別,我們也許需要提供拷貝建構函式。

但是不得不說,拷貝的代價是昂貴的。

所以我們需要尋找一個避免不必要拷貝的方法,即C++11提供的移動語義。
上一篇部落格中有一個句話用到了:

#include <iostream>

void f(int& i) { std::cout << "lvalue ref: " << i << "\n"; }
void f(int&& i) { std::cout
<< "rvalue ref: " << i << "\n"; } int main() { int i = 77; f(i); // lvalue ref called f(99); // rvalue ref called f(std::move(i)); // 稍後介紹 return 0; }

實際上,右值引用注意用於建立移動建構函式和移動賦值運算。

移動建構函式類似於拷貝建構函式,把類的例項物件作為引數,並建立一個新的例項物件。
但是 移動建構函式可以避免記憶體的重新分配,因為我們知道右值引用提供了一個暫時的物件,而不是進行copy,所以我們可以進行移動。

換言之,在設計到關於臨時物件時,右值引用和移動語義允許我們避免不必要的拷貝。我們不想拷貝將要消失的臨時物件,所以這個臨時物件的資源可以被我們用作於其他的物件。

右值就是典型的臨時變數,並且他們可以被修改。如果我們知道一個函式的引數是一個右值,我們可以把它當做一個臨時儲存。這就意味著我們要移動而不是拷貝右值引數的內容。這就會節省很多的空間。

說多無語,看程式碼:

#include <iostream>
#include <algorithm>

class A
{
public:

    // Simple constructor that initializes the resource.
explicit A(size_t length) : mLength(length), mData(new int[length]) { std::cout << "A(size_t). length = " << mLength << "." << std::endl; } // Destructor. ~A() { std::cout << "~A(). length = " << mLength << "."; if (mData != NULL) { std::cout << " Deleting resource."; delete[] mData; // Delete the resource. } std::cout << std::endl; } // Copy constructor. A(const A& other) : mLength(other.mLength), mData(new int[other.mLength]) { std::cout << "A(const A&). length = " << other.mLength << ". Copying resource." << std::endl; std::copy(other.mData, other.mData + mLength, mData); } // Copy assignment operator. A& operator=(const A& other) { std::cout << "operator=(const A&). length = " << other.mLength << ". Copying resource." << std::endl; if (this != &other) { delete[] mData; // Free the existing resource. mLength = other.mLength; mData = new int[mLength]; std::copy(other.mData, other.mData + mLength, mData); } return *this; } // Move constructor. A(A&& other) : mData(NULL), mLength(0) { std::cout << "A(A&&). length = " << other.mLength << ". Moving resource.\n"; // Copy the data pointer and its length from the // source object. mData = other.mData; mLength = other.mLength; // Release the data pointer from the source object so that // the destructor does not free the memory multiple times. other.mData = NULL; other.mLength = 0; } // Move assignment operator. A& operator=(A&& other) { std::cout << "operator=(A&&). length = " << other.mLength << "." << std::endl; if (this != &other) { // Free the existing resource. delete[] mData; // Copy the data pointer and its length from the // source object. mData = other.mData; mLength = other.mLength; // Release the data pointer from the source object so that // the destructor does not free the memory multiple times. other.mData = NULL; other.mLength = 0; } return *this; } // Retrieves the length of the data resource. size_t Length() const { return mLength; } private: size_t mLength; // The length of the resource. int* mData; // The resource. };

移動建構函式
語法:

A(A&& other) noexcept    // C++11 - specifying non-exception throwing functions
{
  mData =  other.mData;  // shallow copy or referential copy
  other.mData = nullptr;
}

最主要的是沒有用到新的資源,是移動而不是拷貝。
假設一個地址指向了一個有一百萬個int元素的陣列,使用move建構函式,我們沒有創造什麼,所以代價很低。

// Move constructor.
A(A&& other) : mData(NULL), mLength(0)
{
    // Copy the data pointer and its length from the 
    // source object.
    mData = other.mData;
    mLength = other.mLength;

    // Release the data pointer from the source object so that
    // the destructor does not free the memory multiple times.
    other.mData = NULL;
    other.mLength = 0;
}

移動比拷貝更快!!!

移動賦值運算子
語法:

A& operator=(A&& other) noexcept
{
  mData =  other.mData;
  other.mData = nullptr;
  return *this;
}

工作流程這樣的:Google上這麼說的:

Release any resources that *this currently owns.
Pilfer other’s resource.
Set other to a default state.
Return *this.

// Move assignment operator.
A& operator=(A&& other)
{
    std::cout << "operator=(A&&). length = " 
             << other.mLength << "." << std::endl;

    if (this != &other) {
      // Free the existing resource.
      delete[] mData;

      // Copy the data pointer and its length from the 
      // source object.
      mData = other.mData;
      mLength = other.mLength;

      // Release the data pointer from the source object so that
      // the destructor does not free the memory multiple times.
      other.mData = NULL;
      other.mLength = 0;
   }
   return *this;
}

讓我們看幾個move帶來的好處吧!
vector眾所周知,C++11後對vector也進行了一些優化。例如vector::push_back()被定義為了兩種版本的過載,一個是cosnt T&左值作為引數,一個是T&&右值作為引數。例如下面的程式碼:

std::vector<A> v;
v.push_back(A(25));
v.push_back(A(75));

上面兩個push_back()都會呼叫push_back(T&&)版本,因為他們的引數為右值。這樣提高了效率。

而 當引數為左值的時候,會呼叫push_back(const T&) 。

#include <vector>

int main()
{
    std::vector<A> v;
    A aObj(25);       // lvalue
    v.push_back(aObj);  // push_back(const T&)
}

但事實我們可以使用 static_cast進行強制:

// calls push_back(T&&)
v.push_back(static_cast<A&&>(aObj));

我們可以使用std::move完成上面的任務:

v.push_back(std::move(aObj));  //calls push_back(T&&)

似乎push_back(T&&)永遠是最佳選擇,但是一定要記住:
push_back(T&&) 使得引數為空。如果我們想要保留引數的值,我們這個時候需要使用拷貝,而不是移動。

最後寫一個例子,看看如何使用move來交換兩個物件:

#include <iostream>
using namespace std;

class A
{
  public:
    // constructor
    explicit A(size_t length)
        : mLength(length), mData(new int[length]) {}

    // move constructor
    A(A&& other)
    {
      mData = other.mData;
      mLength = other.mLength;
      other.mData = nullptr;
      other.mLength = 0;
    }

    // move assignment
    A& operator=(A&& other) noexcept
    {
      mData =  other.mData;
      mLength = other.mLength;
      other.mData = nullptr;
      other.mLength = 0;
      return *this;
    }

    size_t getLength() { return mLength; }


    void swap(A& other)
    {
      A temp = move(other);
      other = move(*this);
      *this = move(temp);
    }

    int* get_mData() { return mData; }

  private:
    int *mData;
    size_t mLength;
};

int main()
{
  A a(11), b(22);
  cout << a.getLength() << ' ' << b.getLength() << endl;
  cout << a.get_mData() << ' ' << b.get_mData() << endl;
  swap(a,b);
  cout << a.getLength() << ' ' << b.getLength() << endl;
  cout << a.get_mData() << ' ' << b.get_mData() << endl;
  return 0;
}