1. 程式人生 > >linux下音樂播放器wav和mp3

linux下音樂播放器wav和mp3

if(rc<0)
{
perror("\nsnd_pcm_hw_params_set_rate_near:");
exit(1);
}


rc = snd_pcm_hw_params(handle, params);
if(rc<0)
{
perror("\nsnd_pcm_hw_params: ");
exit(1);


return 0;
}

/*
* This is a private message structure. A generic pointer to this structure
* is passed to each of the callback functions. Put here any data you need
* to access from within the callbacks.
*/

struct buffer {
unsigned char const *start;
unsigned long length;
};

/*
* This is the input callback. The purpose of this callback is to (re)fill
* the stream buffer which is to be decoded. In this example, an entire file
* has been mapped into memory, so we just call mad_stream_buffer() with the
* address and length of the mapping. When this callback is called a second
* time, we are finished decoding.
*/

static
enum mad_flow input(void *data,
struct mad_stream *stream)
{
struct buffer *buffer = data;

printf("this is input\n");
if (!buffer->length)
return MAD_FLOW_STOP;

mad_stream_buffer(stream, buffer->start, buffer->length);

buffer->length = 0;

return MAD_FLOW_CONTINUE;
}

/*
* The following utility routine performs simple rounding, clipping, and
* scaling of MAD's high-resolution samples down to 16 bits. It does not
* perform any dithering or noise shaping, which would be recommended to
* obtain any exceptional audio quality. It is therefore not recommended to
* use this routine if high-quality output is desired.
*/

static inline
signed int scale(mad_fixed_t sample)
{
/* round */
sample += (1L << (MAD_F_FRACBITS - 16));

/* clip */
if (sample >= MAD_F_ONE)
sample = MAD_F_ONE - 1;
else if (sample < -MAD_F_ONE)
sample = -MAD_F_ONE;

/* quantize */
return sample >> (MAD_F_FRACBITS + 1 - 16);
}

/*
* This is the output callback function. It is called after each frame of
* MPEG audio data has been completely decoded. The purpose of this callback
* is to output (or play) the decoded PCM audio.
*/

static
enum mad_flow output(void *data,
struct mad_header const *header,
struct mad_pcm *pcm)
{
unsigned int nchannels, nsamples,n;
mad_fixed_t const *left_ch, *right_ch;

/* pcm->samplerate contains the sampling frequency */

nchannels = pcm->channels;
n=nsamples= pcm->length;
left_ch= pcm->samples[0];
right_ch= pcm->samples[1];

unsigned char Output[6912], *OutputPtr;
int fmt, wrote, speed, exact_rate, err, dir; 


//printf("This is output\n");



OutputPtr = Output;

while (nsamples--) 
{
signed int sample;

/* output sample(s) in 16-bit signed little-endian PCM */

sample = scale(*left_ch++);

*(OutputPtr++) = sample >> 0;
*(OutputPtr++) = sample >> 8;
if (nchannels == 2)
{
sample = scale (*right_ch++);
*(OutputPtr++) = sample >> 0;
*(OutputPtr++) = sample >> 8;
}


}

OutputPtr = Output;
snd_pcm_writei (handle, OutputPtr, n);
OutputPtr = Output;

return MAD_FLOW_CONTINUE;
}

/*
* This is the error callback function. It is called whenever a decoding
* error occurs. The error is indicated by stream->error; the list of
* possible MAD_ERROR_* errors can be found in the mad.h (or stream.h)
* header file.
*/

static
enum mad_flow error(void *data,
struct mad_stream *stream,
struct mad_frame *frame)
{
struct buffer *buffer = data;
printf("this is mad_flow error\n");
fprintf(stderr, "decoding error 0x%04x (%s) at byte offset %u\n",
stream->error, mad_stream_errorstr(stream),
stream->this_frame - buffer->start);

/* return MAD_FLOW_BREAK here to stop decoding (and propagate an error) */

return MAD_FLOW_CONTINUE;
}

/*
* This is the function called by main() above to perform all the decoding.
* It instantiates a decoder object and configures it with the input,
* output, and error callback functions above. A single call to
* mad_decoder_run() continues until a callback function returns
* MAD_FLOW_STOP (to stop decoding) or MAD_FLOW_BREAK (to stop decoding and
* signal an error).
*/

static
int decode(unsigned char const *start, unsigned long length)
{
struct buffer buffer;
struct mad_decoder decoder;
int result;

/* initialize our private message structure */

buffer.start= start;
buffer.length = length;

/* configure input, output, and error functions */

mad_decoder_init(&decoder, &buffer,
input, 0 /* header */, 0 /* filter */, output,
error, 0 /* message */);

/* start decoding */

result = mad_decoder_run(&decoder, MAD_DECODER_MODE_SYNC);

/* release the decoder */

mad_decoder_finish(&decoder);

return result;
}