1. 程式人生 > >Linux下的五種I/O模型

Linux下的五種I/O模型

  當使用socket()函式和WSASocket()函式建立套接字時,預設都是阻塞的。在建立套接字之後,通過呼叫ioctlsocket()函式,將該套接字設定為非阻塞模式。Linux下的函式是:fcntl().
     套接字設定為非阻塞模式後,在呼叫Windows Sockets API函式時,呼叫函式會立即返回。大多數情況下,這些函式呼叫都會呼叫“失敗”,並返回WSAEWOULDBLOCK錯誤程式碼。說明請求的操作在呼叫期間內沒有時間完成。通常,應用程式需要重複呼叫該函式,直到獲得成功返回程式碼。
     需要說明的是並非所有的Windows Sockets API在非阻塞模式下呼叫,都會返回WSAEWOULDBLOCK錯誤。例如,以非阻塞模式的套接字為引數呼叫bind()函式時,就不會返回該錯誤程式碼。當然,在呼叫WSAStartup()函式時更不會返回該錯誤程式碼,因為該函式是應用程式第一呼叫的函式,當然不會返回這樣的錯誤程式碼。
     要將套接字設定為非阻塞模式,除了使用ioctlsocket()函式之外,還可以使用WSAAsyncselect()和WSAEventselect()函式。當呼叫該函式時,套接字會自動地設定為非阻塞方式。
  由於使用非阻塞套接字在呼叫函式時,會經常返回WSAEWOULDBLOCK錯誤。所以在任何時候,都應仔細檢查返回程式碼並作好對“失敗”的準備。應用程式連續不斷地呼叫這個函式,直到它返回成功指示為止。上面的程式清單中,在While迴圈體內不斷地呼叫recv()函式,以讀入1024個位元組的資料。這種做法很浪費系統資源。
     要完成這樣的操作,有人使用MSG_PEEK標誌呼叫recv()函式檢視緩衝區中是否有資料可讀。同樣,這種方法也不好。因為該做法對系統造成的開銷是很大的,並且應用程式至少要呼叫recv()函式兩次,才能實際地讀入資料。較好的做法是,使用套接字的“I/O模型”來判斷非阻塞套接字是否可讀可寫。
     非阻塞模式套接字與阻塞模式套接字相比,不容易使用。使用非阻塞模式套接字,需要編寫更多的程式碼,以便在每個Windows Sockets API函式呼叫中,對收到的WSAEWOULDBLOCK錯誤進行處理。因此,非阻塞套接字便顯得有些難於使用。
     但是,非阻塞套接字在控制建立的多個連線,在資料的收發量不均,時間不定時,明顯具有優勢。這種套接字在使用上存在一定難度,但只要排除了這些困難,它在功能上還是非常強大的。通常情況下,可考慮使用套接字的“I/O模型”,它有助於應用程式通過非同步方式,同時對一個或多個套接字的通訊加以管理。