1. 程式人生 > >遺傳演算法解決迷宮尋路問題(Java實現)

遺傳演算法解決迷宮尋路問題(Java實現)

1.什麼是遺傳演算法?
就個人理解,遺傳演算法是模擬神奇的大自然中生物“優勝劣汰”原則指導下的進化過程,好的基因有更多的機會得到繁衍,這樣一來,隨著繁衍的進行,生物種群會朝著一個趨勢收斂。而生物繁衍過程中的基因雜交和變異會給種群提供更好的基因序列,這樣種群的繁衍趨勢將會是“長江後浪推前浪,一代更比一代強”,而不會是隻受限於祖先的最好基因。而程式可以通過模擬這種過程來獲得問題的最優解(但不一定能得到)。要利用該過程來解決問題,受限需要構造初始的基因組,併為對每個基因進行適應性分數(衡量該基因的好壞程度)初始化,接著從初始的基因組中選出兩個父基因(根據適應性分數,採用輪盤演算法進行選擇)進行繁衍,基於一定的雜交率(父基因進行雜交的概率)和變異率(子基因變異的概率),這兩個父基因會生成兩個子基因,然後將這兩個基因放入種群中,到這裡繁衍一代完成,重複繁衍的過程直到種群收斂或適應性分數達到最大。
2.利用遺傳演算法解決迷宮尋路問題。
程式碼如下:

import java.awt.Color;
import java.awt.Graphics;
import java.awt.GridLayout;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

@SuppressWarnings("serial")
public class MazeProblem extends
JFrame{
//當前基因組 private static List<Gene> geneGroup = new ArrayList<>(); private static Random random = new Random(); private static int startX = 2; private static int startY = 0; private static int endX = 7; private static int endY = 14; //雜交率 private static
final double CROSSOVER_RATE = 0.7; //變異率 private static final double MUTATION_RATE = 0.0001; //基因組初始個數 private static final int POP_SIZE = 140; //基因長度 private static final int CHROMO_LENGTH = 70; //最大適應性分數的基因 private static Gene maxGene = new Gene(CHROMO_LENGTH); //迷宮地圖 private static int[][] map = {{1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}, {1,0,1,0,0,0,0,0,1,1,1,0,0,0,1}, {5,0,0,0,0,0,0,0,1,1,1,0,0,0,1}, {1,0,0,0,1,1,1,0,0,1,0,0,0,0,1}, {1,0,0,0,1,1,1,0,0,0,0,0,1,0,1}, {1,1,0,0,1,1,1,0,0,0,0,0,1,0,1}, {1,0,0,0,0,1,0,0,0,0,1,1,1,0,1}, {1,0,1,1,0,0,0,1,0,0,0,0,0,0,8}, {1,0,1,1,0,0,0,1,0,0,0,0,0,0,1}, {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}}; private static int MAP_WIDTH = 15; private static int MAP_HEIGHT = 10; private List<JLabel> labels = new ArrayList<>(); public MazeProblem(){ // 初始化 setSize(700, 700); setDefaultCloseOperation(DISPOSE_ON_CLOSE); setResizable(false); getContentPane().setLayout(null); JPanel panel = new JPanel(); panel.setLayout(new GridLayout(MAP_HEIGHT,MAP_WIDTH)); panel.setBounds(10, 10, MAP_WIDTH*40, MAP_HEIGHT*40); getContentPane().add(panel); for(int i=0;i<MAP_HEIGHT;i++){ for(int j=0;j<MAP_WIDTH;j++){ JLabel label = new JLabel(); Color color = null; if(map[i][j] == 1){ color = Color.black; } if(map[i][j] == 0){ color = Color.GRAY; } if(map[i][j] == 5 || map[i][j] ==8){ color = Color.red; } label.setBackground(color); label.setOpaque(true); panel.add(label); labels.add(label); } } } @Override public void paint(Graphics g) { super.paint(g); //畫出路徑 int[] gene = maxGene.getGene(); int curX = startX; int curY = startY; for(int i=0;i<gene.length;i+=2){ //上 if(gene[i] == 0 && gene[i+1] == 0){ if(curX >=1 && map[curX-1][curY] == 0){ curX --; } } //下 else if(gene[i] == 0 && gene[i+1] == 1){ if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){ curX ++; } } //左 else if(gene[i] == 1 && gene[i+1] == 0){ if(curY >=1 && map[curX][curY-1] == 0){ curY --; } } //右 else{ if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){ curY ++; } } labels.get(curX*MAP_WIDTH+curY).setBackground(Color.BLUE); } } public static void main(String[] args) { //初始化基因組 init(); while(maxGene.getScore() < 1){ //選擇進行交配的兩個基因 int p1 = getParent(geneGroup); int p2 = getParent(geneGroup); //用輪盤轉動法選擇兩個基因進行交配,雜交和變異 mate(p1,p2); } new MazeProblem().setVisible(true); } /** * 根據路徑獲得適應性分數 * @param path * @return */ private static double getScore(int[] gene){ double result = 0; int curX = startX; int curY = startY; for(int i=0;i<gene.length;i+=2){ //上 if(gene[i] == 0 && gene[i+1] == 0){ if(curX >=1 && map[curX-1][curY] == 0){ curX --; } } //下 else if(gene[i] == 0 && gene[i+1] == 1){ if(curX <=MAP_HEIGHT-1 && map[curX+1][curY] == 0){ curX ++; } } //左 else if(gene[i] == 1 && gene[i+1] == 0){ if(curY >=1 && map[curX][curY-1] == 0){ curY --; } } //右 else{ if(curY <= MAP_WIDTH-1 && map[curX][curY+1] == 0){ curY ++; } } } double x = Math.abs(curX - endX); double y = Math.abs(curY - endY); //如果和終點只有一格距離則返回1 if((x == 1&& y==0) || (x==0&&y==1)){ return 1; } //計算適應性分數 result = 1/(x+y+1); return result; } /** * 基因初始化 */ private static void init(){ for(int i=0;i<POP_SIZE;i++){ Gene gene = new Gene(CHROMO_LENGTH); double score = getScore(gene.getGene()); if(score > maxGene.getScore()){ maxGene = gene; } gene.setScore(score); geneGroup.add(gene); } } /** * 根據適應性分數隨機獲得進行交配的父類基因下標 * @param list * @return */ private static int getParent(List<Gene> list){ int result = 0; double r = random.nextDouble(); double score; double sum = 0; double totalScores = getTotalScores(geneGroup); for(int i=0;i<list.size();i++){ Gene gene = list.get(i); score = gene.getScore(); sum += score/totalScores; if(sum >= r){ result = i; return result; } } return result; } /** * 獲得全部基因組的適應性分數總和 * @param list * @return */ private static double getTotalScores(List<Gene> list){ double result = 0; for(int i=0;i<list.size();i++){ result += list.get(i).getScore(); } return result; } /** * 兩個基因進行交配 * @param p1 * @param p2 */ private static void mate(int n1,int n2){ Gene p1 = geneGroup.get(n1); Gene p2 = geneGroup.get(n2); Gene c1 = new Gene(CHROMO_LENGTH); Gene c2 = new Gene(CHROMO_LENGTH); int[] gene1 = new int[CHROMO_LENGTH]; int[] gene2 = new int[CHROMO_LENGTH]; for(int i=0;i<CHROMO_LENGTH;i++){ gene1[i] = p1.getGene()[i]; gene2[i] = p2.getGene()[i]; } //先根據雜交率決定是否進行雜交 double r = random.nextDouble(); if(r >= CROSSOVER_RATE){ //決定雜交起點 int n = random.nextInt(CHROMO_LENGTH); for(int i=n;i<CHROMO_LENGTH;i++){ int tmp = gene1[i]; gene1[i] = gene2[i]; gene2[i] = tmp; } } //根據變異率決定是否 r = random.nextDouble(); if(r >= MUTATION_RATE){ //選擇變異位置 int n = random.nextInt(CHROMO_LENGTH); if(gene1[n] == 0){ gene1[n] = 1; } else{ gene1[n] = 0; } if(gene2[n] == 0){ gene2[n] = 1; } else{ gene2[n] = 0; } } c1.setGene(gene1); c2.setGene(gene2); double score1 = getScore(c1.getGene()); double score2 = getScore(c2.getGene()); if(score1 >maxGene.getScore()){ maxGene = c1; } if(score2 >maxGene.getScore()){ maxGene = c2; } c1.setScore(score1); c2.setScore(score2); geneGroup.add(c1); geneGroup.add(c2); } } /** * 基因 * @author ZZF * */ class Gene{ //染色體長度 private int len; //基因陣列 private int[] gene; //適應性分數 private double score; public Gene(int len){ this.len = len; gene = new int[len]; Random random = new Random(); //隨機生成一個基因序列 for(int i=0;i<len;i++){ gene[i] = random.nextInt(2); } //適應性分數設定為0 this.score = 0; } public int getLen() { return len; } public void setLen(int len) { this.len = len; } public int[] getGene() { return gene; } public void setGene(int[] gene) { this.gene = gene; } public double getScore() { return score; } public void setScore(double score) { this.score = score; } public void print(){ StringBuilder sb = new StringBuilder(); for(int i=0;i<gene.length;i+=2){ if(gene[i] == 0 && gene[i+1] == 0){ sb.append("上"); } //下 else if(gene[i] == 0 && gene[i+1] == 1){ sb.append("下"); } //左 else if(gene[i] == 1 && gene[i+1] == 0){ sb.append("左"); } //右 else{ sb.append("右"); } } System.out.println(sb.toString()); } }

3.下面是執行結果截圖
程式執行結果