1. 程式人生 > >決策樹實戰:從原理到實現

決策樹實戰:從原理到實現

主要內容:

1. 決策樹簡介

2. 決策樹的構建演算法

3. python實現決策樹

4. 擴充套件

5. 程式碼附錄

6 .參考資料

決策樹(decision tree) 是一種基本的分類和迴歸方法,決策樹的學習包括3個步驟:特徵選擇、決策樹的生成和決策樹的剪枝。本文討論決策樹用作分類的原理和ID3演算法的python實現。

1.決策樹

決策樹模型是一種描述對例項進行分類的樹形結構。決策樹由節點和有向邊組成。節點有內部節點(internal node)和葉子節點(leaf node),內部節點表示一個特徵(feature),葉子節點(node)表示一個類(label)。有向邊表示相應特徵的取值。如圖所示是判斷一個是否能夠有償還債務的能力的決策樹

image

2. 如何從歷史資料構建決策樹

如何一步步構建決策樹,關鍵是找出相應的節點和邊。我們需要解決的第一個問題就是,當前資料集上哪個特徵在劃分資料分類時起決定性作用。為了找出決定性的特徵,劃分出最好的結果,必須評估每個特徵。資訊增益石一種有效的評估方法。

2.1.資訊增益(information gain)

資訊增益表示得知特徵X的資訊而使得類Y的資訊的不確定性減少程度

                              g(D,A)=H(D)-H(D|A)

H(D)資料D的經驗熵, H(D|A) 特徵A給定條件下D的經驗條件熵, 也稱為互資訊,決策樹學習中的資訊增益等價於訓練資料集中類與特徵的互資訊

基於資訊增益準則的特徵選擇方法是:對訓練資料集D,計算其每個特徵的資訊增益熵, 選擇資訊增益最大的特徵。

資訊增益演算法:

                 


2.2 決策樹的生產

演算法流程:




3. 實戰決策樹

首先獲取資料:

def createDataSet():  
    #dataSet=pd.read_csv(datafile)
   # label=[]
    dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
    labels=['no surfacing','flippers']
    return dataSet, labels

根據資料遞迴生成樹:

def createTree(dataSet,labels):
    classList=[example[-1] for example in dataSet]
    if classList.count(classList[0])==len(classList):
        return classList[0]      #如果改子集全部是同一類,返回該類
    if len(dataSet[0])==1:
        return majorityCnt(classList)   #返回葉子節點的值
    bestFeat=chooseBestFeatureToSplit(dataSet)   #選取最佳特徵
    bestFeatLabel=labels[bestFeat]
    myTree={bestFeatLabel:{}}
    del (labels[bestFeat])
    featValues=[example[bestFeat] for example in dataSet]
    uniqueVals=set(featValues)
    for value in uniqueVals:
        subLabels=labels[:]
        myTree[bestFeatLabel][value]=createTree(splitDataSet\     #遞迴呼叫,採用字典方式儲存樹的結構
                                    (dataSet,bestFeat,value),subLabels)
    return myTree


計算決策用到的子函式:

計算給定資料集的夏農熵:
def calcShannonEnt(dataSet):
    numEntries=len(dataSet)
    labelCounts={}
    for featVec in dataSet:
        currentLabel=featVec[-1]
        #計算feature值的頻數,為所有可能的類建立字典
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
    shannonEnt=0.0
    #計算Shannon entropy
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEnt

分割資料

def splitDataSet(dataSet, axis, value):
    retDataSet=[]
    for featVec in dataSet:
        if featVec[axis]==value:
            reducedFeatVec=featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

選擇最好的特徵進行分割資料

def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1
    baseEntropy=calcShannonEnt(dataSet)
    bestInfoGain=0.0; bestFeature=-1;
    for i in range(numFeatures):
        featList=[example[i] for example in dataSet]
        uniqueVals=set(featList)
        newEntropy=0.0
        #計算每一種劃分方式的資訊熵
        for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt(subDataSet)
        #資訊增益熵
        infoGain=baseEntropy - newEntropy
        #最好資訊增益
        if(infoGain>bestInfoGain):
            bestInfoGain=infoGain
            bestFeature=i
    return bestFeature
    

#統計資料集出現頻率最高的label

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote]=0
        classCount[vote]+=1
    sortedClassCount=sorted(classCount.iteritems(),\
    key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

5.附錄程式碼:.

5.1 trees.py

# -*- coding: utf-8 -*-
"""
Created on Fri Apr 03 09:13:58 2015

@author: beta
"""

from math import log

import operator
import  treePlotter

def calcShannonEnt(dataSet):
    numEntries=len(dataSet)
    labelCounts={}
    for featVec in dataSet:
        currentLabel=featVec[-1]
        #計算feature值的頻數,為所有可能的類建立字典
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
    shannonEnt=0.0
    #計算Shannon entropy
    for key in labelCounts:
        prob=float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEnt
    
def createDataSet():  
    #dataSet=pd.read_csv(datafile)
   # label=[]
    dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
    labels=['no surfacing','flippers']
    return dataSet, labels

def splitDataSet(dataSet, axis, value):
    retDataSet=[]
    for featVec in dataSet:
        if featVec[axis]==value:
            reducedFeatVec=featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

def chooseBestFeatureToSplit(dataSet):
    numFeatures=len(dataSet[0])-1
    baseEntropy=calcShannonEnt(dataSet)
    bestInfoGain=0.0; bestFeature=-1;
    for i in range(numFeatures):
        featList=[example[i] for example in dataSet]
        uniqueVals=set(featList)
        newEntropy=0.0
        #計算每一種劃分方式的資訊熵
        for value in uniqueVals:
            subDataSet=splitDataSet(dataSet,i,value)
            prob=len(subDataSet)/float(len(dataSet))
            newEntropy+=prob*calcShannonEnt(subDataSet)
        #資訊增益熵
        infoGain=baseEntropy - newEntropy
        #最好資訊增益
        if(infoGain>bestInfoGain):
            bestInfoGain=infoGain
            bestFeature=i
    return bestFeature
    

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote]=0
        classCount[vote]+=1
    sortedClassCount=sorted(classCount.iteritems(),\
    key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]
    
def createTree(dataSet,labels):
    classList=[example[-1] for example in dataSet]
    if classList.count(classList[0])==len(classList):
        return classList[0]
    if len(dataSet[0])==1:
        return majorityCnt(classList)
    bestFeat=chooseBestFeatureToSplit(dataSet)
    bestFeatLabel=labels[bestFeat]
    myTree={bestFeatLabel:{}}
    del (labels[bestFeat])
    featValues=[example[bestFeat] for example in dataSet]
    uniqueVals=set(featValues)
    for value in uniqueVals:
        subLabels=labels[:]
        myTree[bestFeatLabel][value]=createTree(splitDataSet\
                                    (dataSet,bestFeat,value),subLabels)
    return myTree
    
if __name__=='__main__':
    
    myDat, labels=createDataSet()
    myTree=createTree(myDat,labels)
    treePlotter.createPlot(myTree)
    
5.2 treePlotter.py 程式碼:
'''
Created on Oct 14, 2010

@author: Peter Harrington
'''
import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
             xytext=centerPt, textcoords='axes fraction',
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it's a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it's a tree, and the first element will be another dict

def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

#def createPlot():
#    fig = plt.figure(1, facecolor='white')
#    fig.clf()
#    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
#    plotNode('a decision node', (0.5, 0.1), (0.1, 0.5), decisionNode)
#    plotNode('a leaf node', (0.8, 0.1), (0.3, 0.8), leafNode)
#    plt.show()

def retrieveTree(i):
    listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                  {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                  ]
    return listOfTrees[i]

#createPlot(thisTree)



6.參考資料:

1. 李航 《統計學習方法》

2.. Peter Harrington 《機器學習實戰》