1. 程式人生 > >虛擬函式實現原理

虛擬函式實現原理

前言

C++中的虛擬函式的作用主要是實現了多型的機制。關於多型,簡而言之就是用父類型別的指標指向其子類的例項,然後通過父類的指標呼叫實際子類的成員函式。這種技術可以讓父類的指標有“多種形態”,這是一種泛型技術。所謂泛型技術,說白了就是試圖使用不變的程式碼來實現可變的演算法。比如:模板技術,RTTI技術,虛擬函式技術,要麼是試圖做到在編譯時決議,要麼試圖做到執行時決議。

關於虛擬函式的使用方法,我在這裡不做過多的闡述。大家可以看看相關的C++的書籍。在這篇文章中,我只想從虛擬函式的實現機制上面為大家一個清晰的剖析。

當然,相同的文章在網上也出現過一些了,但我總感覺這些文章不是很容易閱讀,大段大段的程式碼,沒有圖片,沒有詳細的說明,沒有比較,沒有舉一反三。不利於學習和閱讀,所以這是我想寫下這篇文章的原因。也希望大家多給我提意見。

言歸正傳,讓我們一起進入虛擬函式的世界。

虛擬函式表

對C++ 瞭解的人都應該知道虛擬函式(Virtual Function)是通過一張虛擬函式表(Virtual Table)來實現的。簡稱為V-Table。在這個表中,主是要一個類的虛擬函式的地址表,這張表解決了繼承、覆蓋的問題,保證其容真實反應實際的函式。這樣,在有虛擬函式的類的例項中這個表被分配在了這個例項的記憶體中,所以,當我們用父類的指標來操作一個子類的時候,這張虛擬函式表就顯得由為重要了,它就像一個地圖一樣,指明瞭實際所應該呼叫的函式。

這裡我們著重看一下這張虛擬函式表。在C++的標準規格說明書中說到,編譯器必需要保證虛擬函式表的指標存在於物件例項中最前面的位置(這是為了保證正確取到虛擬函式的偏移量)。這意味著我們通過物件例項的地址得到這張虛擬函式表,然後就可以遍歷其中函式指標,並呼叫相應的函式。

聽我扯了那麼多,我可以感覺出來你現在可能比以前更加暈頭轉向了。沒關係,下面就是實際的例子,相信聰明的你一看就明白了。

假設我們有這樣的一個類:

class Base {

public:

virtual void f() { cout << "Base::f" << endl; }

virtual void g() { cout << "Base::g" << endl; }

virtual void h() { cout << "Base::h" << endl; }

};

按照上面的說法,我們可以通過Base的例項來得到虛擬函式表。下面是實際例程:

typedef void(*Fun)(void);

Base b;

Fun pFun = NULL;

cout << "虛擬函式表地址:" << (int*)(&b) << endl;

cout << "虛擬函式表 — 第一個函式地址:" << (int*)*(int*)(&b) << endl;

// Invoke the first virtual function

pFun = (Fun)*((int*)*(int*)(&b));

pFun();

實際執行經果如下:(Windows XP+VS2003, Linux 2.6.22 + GCC 4.1.3)

虛擬函式表地址:0012FED4

虛擬函式表 — 第一個函式地址:0044F148

Base::f

通過這個示例,我們可以看到,我們可以通過強行把&b轉成int *,取得虛擬函式表的地址,然後,再次取址就可以得到第一個虛擬函式的地址了,也就是Base::f(),這在上面的程式中得到了驗證(把int* 強制轉成了函式指標)。通過這個示例,我們就可以知道如果要呼叫Base::g()和Base::h(),其程式碼如下:

(Fun)*((int*)*(int*)(&b)+0); // Base::f()

(Fun)*((int*)*(int*)(&b)+1); // Base::g()

(Fun)*((int*)*(int*)(&b)+2); // Base::h()

這個時候你應該懂了吧。什麼?還是有點暈。也是,這樣的程式碼看著太亂了。沒問題,讓我畫個圖解釋一下。如下所示:

注意:在上面這個圖中,我在虛擬函式表的最後多加了一個結點,這是虛擬函式表的結束結點,就像字串的結束符“\0”一樣,其標誌了虛擬函式表的結束。這個結束標誌的值在不同的編譯器下是不同的。在WinXP+VS2003下,這個值是NULL。而在Ubuntu 7.10 + Linux 2.6.22 + GCC 4.1.3下,這個值是如果1,表示還有下一個虛擬函式表,如果值是0,表示是最後一個虛擬函式表。

下面,我將分別說明“無覆蓋”和“有覆蓋”時的虛擬函式表的樣子。沒有覆蓋父類的虛擬函式是毫無意義的。我之所以要講述沒有覆蓋的情況,主要目的是為了給一個對比。在比較之下,我們可以更加清楚地知道其內部的具體實現。

一般繼承(無虛擬函式覆蓋)

下面,再讓我們來看看繼承時的虛擬函式表是什麼樣的。假設有如下所示的一個繼承關係:

請注意,在這個繼承關係中,子類沒有過載任何父類的函式。那麼,在派生類的例項中,其虛擬函式表如下所示:

對於例項:Derive d; 的虛擬函式表如下:

我們可以看到下面幾點:

1)虛擬函式按照其宣告順序放於表中。

2)父類的虛擬函式在子類的虛擬函式前面。

我相信聰明的你一定可以參考前面的那個程式,來編寫一段程式來驗證。

一般繼承(有虛擬函式覆蓋)

覆蓋父類的虛擬函式是很顯然的事情,不然,虛擬函式就變得毫無意義。下面,我們來看一下,如果子類中有虛擬函式過載了父類的虛擬函式,會是一個什麼樣子?假設,我們有下面這樣的一個繼承關係。

為了讓大家看到被繼承過後的效果,在這個類的設計中,我只覆蓋了父類的一個函式:f()。那麼,對於派生類的例項,其虛擬函式表會是下面的一個樣子:

我們從表中可以看到下面幾點,

1)覆蓋的f()函式被放到了虛表中原來父類虛擬函式的位置。

2)沒有被覆蓋的函式依舊。

這樣,我們就可以看到對於下面這樣的程式,

Base *b = new Derive();

b->f();

由b所指的記憶體中的虛擬函式表的f()的位置已經被Derive::f()函式地址所取代,於是在實際呼叫發生時,是Derive::f()被呼叫了。這就實現了多型。

多重繼承(無虛擬函式覆蓋)

下面,再讓我們來看看多重繼承中的情況,假設有下面這樣一個類的繼承關係。注意:子類並沒有覆蓋父類的函式。

對於子類例項中的虛擬函式表,是下面這個樣子:

我們可以看到:

1) 每個父類都有自己的虛表。

2) 子類的成員函式被放到了第一個父類的表中。(所謂的第一個父類是按照宣告順序來判斷的)

這樣做就是為了解決不同的父類型別的指標指向同一個子類例項,而能夠呼叫到實際的函式。

多重繼承(有虛擬函式覆蓋)

下面我們再來看看,如果發生虛擬函式覆蓋的情況。

下圖中,我們在子類中覆蓋了父類的f()函式。

下面是對於子類例項中的虛擬函式表的圖:

我們可以看見,三個父類虛擬函式表中的f()的位置被替換成了子類的函式指標。這樣,我們就可以任一靜態型別的父類來指向子類,並呼叫子類的f()了。如:

Derive d;

Base1 *b1 = &d;

Base2 *b2 = &d;

Base3 *b3 = &d;

b1->f(); //Derive::f()

b2->f(); //Derive::f()

b3->f(); //Derive::f()

b1->g(); //Base1::g()

b2->g(); //Base2::g()

b3->g(); //Base3::g()

安全性

每次寫C++的文章,總免不了要批判一下C++。這篇文章也不例外。通過上面的講述,相信我們對虛擬函式表有一個比較細緻的瞭解了。水可載舟,亦可覆舟。下面,讓我們來看看我們可以用虛擬函式表來乾點什麼壞事吧。

一、通過父型別的指標訪問子類自己的虛擬函式

我們知道,子類沒有過載父類的虛擬函式是一件毫無意義的事情。因為多型也是要基於函式過載的。雖然在上面的圖中我們可以看到Base1的虛表中有Derive的虛擬函式,但我們根本不可能使用下面的語句來呼叫子類的自有虛擬函式:

Base1 *b1 = new Derive();

b1->f1(); //編譯出錯

任何妄圖使用父類指標想呼叫子類中的未覆蓋父類的成員函式的行為都會被編譯器視為非法,所以,這樣的程式根本無法編譯通過。但在執行時,我們可以通過指標的方式訪問虛擬函式表來達到違反C++語義的行為。(關於這方面的嘗試,通過閱讀後面附錄的程式碼,相信你可以做到這一點)

二、訪問non-public的虛擬函式

另外,如果父類的虛擬函式是private或是protected的,但這些非public的虛擬函式同樣會存在於虛擬函式表中,所以,我們同樣可以使用訪問虛擬函式表的方式來訪問這些non-public的虛擬函式,這是很容易做到的。

如:

class Base {

private:

virtual void f() { cout << "Base::f" << endl; }

};

class Derive : public Base{

};

typedef void(*Fun)(void);

void main() {

Derive d;

Fun pFun = (Fun)*((int*)*(int*)(&d)+0);

pFun();

}

結束語

C++這門語言是一門Magic的語言,對於程式設計師來說,我們似乎永遠摸不清楚這門語言揹著我們在幹了什麼。需要熟悉這門語言,我們就必需要了解C++裡面的那些東西,需要去了解C++中那些危險的東西。不然,這是一種搬起石頭砸自己腳的程式語言。

在文章束之前還是介紹一下自己吧。我從事軟體研發有十個年頭了,目前是軟體開發技術主管,技術方面,主攻Unix/C/C++,比較喜歡網路上的技術,比如分散式計算,網格計算,P2P,Ajax等一切和網際網路相關的東西。管理方面比較擅長於團隊建設,技術趨勢分析,專案管理。歡迎大家和我交流,我的MSN和Email是:[email protected]

附錄一:VC中檢視虛擬函式表

我們可以在VC的IDE環境中的Debug狀態下展開類的例項就可以看到虛擬函式表了(並不是很完整的)

附錄 二:例程

下面是一個關於多重繼承的虛擬函式表訪問的例程:

#include <iostream>

using namespace std;

class Base1 {

public:

virtual void f() { cout << "Base1::f" << endl; }

virtual void g() { cout << "Base1::g" << endl; }

virtual void h() { cout << "Base1::h" << endl; }

};

class Base2 {

public:

virtual void f() { cout << "Base2::f" << endl; }

virtual void g() { cout << "Base2::g" << endl; }

virtual void h() { cout << "Base2::h" << endl; }

};

class Base3 {

public:

virtual void f() { cout << "Base3::f" << endl; }

virtual void g() { cout << "Base3::g" << endl; }

virtual void h() { cout << "Base3::h" << endl; }

};

class Derive : public Base1, public Base2, public Base3 {

public:

virtual void f() { cout << "Derive::f" << endl; }

virtual void g1() { cout << "Derive::g1" << endl; }

};

typedef void(*Fun)(void);

int main()

{

Fun pFun = NULL;

Derive d;

int** pVtab = (int**)&d;

//Base1's vtable

//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+0);

pFun = (Fun)pVtab[0][0];

pFun();

//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+1);

pFun = (Fun)pVtab[0][1];

pFun();

//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+2);

pFun = (Fun)pVtab[0][2];

pFun();

//Derive's vtable

//pFun = (Fun)*((int*)*(int*)((int*)&d+0)+3);

pFun = (Fun)pVtab[0][3];

pFun();

//The tail of the vtable

pFun = (Fun)pVtab[0][4];

cout<<pFun<<endl;

//Base2's vtable

//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);

pFun = (Fun)pVtab[1][0];

pFun();

//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);

pFun = (Fun)pVtab[1][1];

pFun();

pFun = (Fun)pVtab[1][2];

pFun();

//The tail of the vtable

pFun = (Fun)pVtab[1][3];

cout<<pFun<<endl;

//Base3's vtable

//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+0);

pFun = (Fun)pVtab[2][0];

pFun();

//pFun = (Fun)*((int*)*(int*)((int*)&d+1)+1);

pFun = (Fun)pVtab[2][1];

pFun();

pFun = (Fun)pVtab[2][2];

pFun();

//The tail of the vtable

pFun = (Fun)pVtab[2][3];

cout<<pFun<<endl;

return 0;

}

相關推薦

C++物件模型之虛擬函式實現原理

在C++中,多型(polymorphism)的意思是,用基類的指標或者引用,定址出一個派生類物件。而虛擬函式(virtual member function)是多型的基礎,這也是面向物件程式設計迷人之處。現在剛好有時間,就寫一下自己對C++在單一繼承情況下如何實現虛擬函式的

虛擬函式實現原理

前言 C++中的虛擬函式的作用主要是實現了多型的機制。關於多型,簡而言之就是用父類型別的指標指向其子類的例項,然後通過父類的指標呼叫實際子類的成員函式。這種技術可以讓父類的指標有“多種形態”,這是一種泛型技術。所謂泛型技術,說白了就是試圖使用不變的程式碼來實現可變的演算法。

【C++學習筆記】虛擬函式實現多型原理

源至:https://blog.csdn.net/haoel/article/details/1948051   C++中的虛擬函式的作用主要是實現了多型的機制。關於多型,簡而言之就是用父類型別的指標指向其子類的例項,然後通過父類的指標呼叫實際子類的成員函式。這種技術可以讓父類的指

C/C++虛擬函式實現的基本原理

1. 概述 簡單地說,每一個含有虛擬函式(無論是其本身的,還是繼承而來的)的類都至少有一個與之對應的虛擬函式表,其中存放著該類所有的虛擬函式對應的函式指標。例: 其中: B的虛擬函式表中存放著B::foo和B::bar兩個函式指標。 D的虛擬函式表中存放的既有繼承自B的虛擬函式B::foo,又

c++語言虛擬函式實現多型的原理

 自上一個帖子之間跳過了一篇總結性的帖子,之後再發,今天主要研究了c++語言當中虛擬函式對多型的實現,感嘆於c++設計者的精妙絕倫 c++中虛擬函式表的作用主要是實現了多型的機制。首先先解釋一下多型的概念,多型是c++的特點之一,關於多型,簡而言之就是 用父類的指標指向其子類的例項,然後通過父類的

C++中虛擬函式工作原理

C++中的虛擬函式的作用主要是實現了多型的機制。關於多型,簡而言之就是用父類型別的指標指向其子類的例項,然後通過父類的指標呼叫實際子類的成員函式。 所謂泛型技術,比如:模板技術,RTTI技術,虛擬函式技術,要麼是試圖做到在編譯時決議,要麼試圖做到執行時決議。 虛擬函式表(

C++中虛擬函式工作原理和 虛 繼承類的記憶體佔用大小計算

                      虛擬函式的實現要求物件攜帶額外的資訊,這些資訊用於在執行時確定該物件應該呼叫哪一個虛擬函式。典型情況下,這一資訊具有一種被稱為 vptr(virtual table pointer,虛擬函式表指標)的指標的形式。vptr 指向一個被稱為 vtbl(virtual t

056虛擬函式實現多型

Shape.h #ifndef SHAPE_H #define SHAPE_H class Shape { public: Shape(); ~Shape(); virtual double calcArea(); }; #endif Shape.cpp #inc

STL中的sort函式實現原理

STL的sort()演算法,資料量大時採用Quick Sort,分段遞迴排序。一旦分段後的資料量小於某個閾值,為避免Quick Sort的遞迴呼叫帶來過大的額外開銷,就改用Insertion Sort(插入排序)。如果遞迴層次過深,還會改用Heap Sort。 STL中的sort並非只是

vue 虛擬dom實現原理

function updateChildren (parentElm, oldCh, newCh, insertedVnodeQueue, removeOnly) { // 為oldCh和newCh分別建立索引,為之後遍歷的依據 let oldStartIdx = 0 let new

c++ template 多層繼承下找不到純虛擬函式實現 報錯:undefined reference to "xxx"

如下程式碼中,定義了3個類,ClassA,ClassB,ClassC,依次為被繼承關係,ClassA,ClassB是模板類, 在ClassA中定義了一個純虛擬函式getKeyFromObject,實現將從V中獲取K的功能: getKeyFromObject函

malloc函式實現原理

任何一個用過或學過C的人對malloc都不會陌生。大家都知道malloc可以分配一段連續的記憶體空間,並且在不再使用時可以通過free釋放掉。但是,許多程式設計師對malloc背後的事情並不熟悉,許多人甚至把malloc當做作業系統所提供的系統呼叫或C的關鍵字。實際上,m

C語言編寫log檔案以及printf函式實現原理

C語言編寫log檔案以及printf函式實現原理        在系統除錯中通過在檔案系統裡寫log日誌是一個長期分析系統執行的好方法。做系統除錯應該養成這個習慣,可以方便的監控系統可能出現的各種異常。        今天學習下log日誌的書寫方法。Log一般可以分為以下4種

[C/C++]C++中虛擬函式原理虛擬函式

#include using namespace std; class A{     public:     A();     virtual void fun1();     void fun2(); }; A::A() { } void A::fun1() {     cout<<"I am

c++虛擬函式實現機制及記憶體模型

前言 大家都應該知道C++的精髓是虛擬函式吧? 虛擬函式帶來的好處就是: 可以定義一個基類的指標, 其指向一個繼承類, 當通過基類的指標去呼叫函式時, 可以在執行時決定該呼叫基類的函式還是繼承類的函式. 虛擬函式是實現多型(動態繫結)/介面函式的基礎. 可以說: 沒有虛

虛擬函式實現機制、建構函式、解構函式能否為虛擬函式,與純虛擬函式

 虛擬函式 虛擬函式是C++中用於實現多型的機制。核心理念就是通過基類指標訪問派生類中定義的函式。虛擬函式允許子類重新定義成員函式,繼承時不重新定義虛擬函式也是可以的。而子類重新定義父類的做法稱為覆蓋(override),或者稱為重寫。如果父類或者祖先類中函式func()為虛

C++ 中的虛擬函式表及虛擬函式執行原理

為了實現虛擬函式,C++ 使用了虛擬函式表來達到延遲繫結的目的。虛擬函式表在動態/延遲繫結行為中用於查詢呼叫的函式。 儘管要描述清楚虛擬函式表的機制會多費點口舌,但其實其本身還是比較簡單的。 首先,每個包含虛擬函式的類(或者繼承自的類包含了虛擬函式)都有一個自己的虛擬函式表。這個表是一個在編譯時確定的靜態

C++多型呼叫實現原理虛擬函式表詳解)

1.帶有虛擬函式的基類物件模型 我們先看段程式碼: #include<iostream> using namespace std; class B1 { public: void func1() {} int _b; }; class B2 { pub

C/C++雜記:虛擬函式實現的基本原理 虛擬函式

部落格園 首頁 新隨筆 聯絡 訂閱 管理 1. 概述 簡單地說,每一個含有虛擬函式(無論是其本身的,還是繼承而來的)的類都至少有一個與之對應的虛擬函式表,其中存放著該類所有的虛擬函式對應的函式指標。例: 其中: B的虛擬函式表中存放著B::fo

【轉】C++動態繫結和虛擬函式表vtable (動態實現原理

 關於C++內部如何實現多型,對程式設計師來說即使不知道也沒關係,但是如果你想加深對多型的理解,寫出優秀的程式碼,那麼這一節就具有重要的意義。 我們知道,函式呼叫實際上是執行函式體中的程式碼。函式體是記憶體中的一個程式碼段,函式名就表示該程式碼段的首地址,函式執行時就從這裡開始。說得簡單