1. 程式人生 > >吳恩達深度學習課程deeplearning.ai課程作業:Class 1 Week 4 assignment4_1

吳恩達深度學習課程deeplearning.ai課程作業:Class 1 Week 4 assignment4_1

吳恩達deeplearning.ai課程作業,自己寫的答案。
補充說明:
1. 評論中總有人問為什麼直接複製這些notebook執行不了?請不要直接複製貼上,不可能執行通過的,這個只是notebook中我們要自己寫的那部分,要正確執行還需要其他py檔案,請自己到GitHub上下載完整的。這裡的部分僅僅是參考用的,建議還是自己按照提示一點一點寫,如果實在卡住了再看答案。個人覺得這樣才是正確的學習方法,況且作業也不算難。
2. 關於評論中有人說我是抄襲,註釋還沒別人詳細,複製下來還執行不過。答覆是:做伸手黨之前,請先搞清這個作業是幹什麼的。大家都是從GitHub上下載原始的作業,然後根據程式碼前面的提示(通常會指定函式和公式)來編寫程式碼,而且後面還有expected output供你比對,如果程式正確,結果一般來說是一樣的。請不要無腦噴,說什麼跟別人的答案一樣的。說到底,我們要做的就是,看他的文字部分,根據提示在程式碼中加入部分自己的程式碼。我們自己要寫的部分只有那麼一小部分程式碼。
3. 由於實在很反感無腦噴子,故禁止了下面的評論功能,請見諒。如果有問題,請私信我,在力所能及的範圍內會盡量幫忙。

Building your Deep Neural Network: Step by Step

Welcome to your week 4 assignment (part 1 of 2)! You have previously trained a 2-layer Neural Network (with a single hidden layer). This week, you will build a deep neural network, with as many layers as you want!

  • In this notebook, you will implement all the functions required to build a deep neural network.
  • In the next assignment, you will use these functions to build a deep neural network for image classification.

After this assignment you will be able to:
- Use non-linear units like ReLU to improve your model
- Build a deeper neural network (with more than 1 hidden layer)
- Implement an easy-to-use neural network class

Notation:
- Superscript [l] denotes a quantity associated with the lth layer.
- Example: a[L] is the Lth layer activation. W[L] and b[L] are the Lth layer parameters.
- Superscript (i) denotes a quantity associated with the ith example.
- Example: x(i) is the ith training example.
- Lowerscript i denotes the ith entry of a vector.
- Example: ai[l] denotes the ith entry of the lth layer’s activations).

Let’s get started!

1 - Packages

Let’s first import all the packages that you will need during this assignment.
- numpy is the main package for scientific computing with Python.
- matplotlib is a library to plot graphs in Python.
- dnn_utils provides some necessary functions for this notebook.
- testCases provides some test cases to assess the correctness of your functions
- np.random.seed(1) is used to keep all the random function calls consistent. It will help us grade your work. Please don’t change the seed.

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid, sigmoid_backward, relu, relu_backward

%matplotlib inline
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

%load_ext autoreload
%autoreload 2

np.random.seed(1)

2 - Outline of the Assignment

To build your neural network, you will be implementing several “helper functions”. These helper functions will be used in the next assignment to build a two-layer neural network and an L-layer neural network. Each small helper function you will implement will have detailed instructions that will walk you through the necessary steps. Here is an outline of this assignment, you will:

  • Initialize the parameters for a two-layer network and for an L-layer neural network.
  • Implement the forward propagation module (shown in purple in the figure below).
    • Complete the LINEAR part of a layer’s forward propagation step (resulting in Z[l]).
    • We give you the ACTIVATION function (relu/sigmoid).
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] forward function.
    • Stack the [LINEAR->RELU] forward function L-1 time (for layers 1 through L-1) and add a [LINEAR->SIGMOID] at the end (for the final layer L). This gives you a new L_model_forward function.
  • Compute the loss.
  • Implement the backward propagation module (denoted in red in the figure below).
    • Complete the LINEAR part of a layer’s backward propagation step.
    • We give you the gradient of the ACTIVATE function (relu_backward/sigmoid_backward)
    • Combine the previous two steps into a new [LINEAR->ACTIVATION] backward function.
    • Stack [LINEAR->RELU] backward L-1 times and add [LINEAR->SIGMOID] backward in a new L_model_backward function
  • Finally update the parameters.


Figure 1

Note that for every forward function, there is a corresponding backward function. That is why at every step of your forward module you will be storing some values in a cache. The cached values are useful for computing gradients. In the backpropagation module you will then use the cache to calculate the gradients. This assignment will show you exactly how to carry out each of these steps.

3 - Initialization

You will write two helper functions that will initialize the parameters for your model. The first function will be used to initialize parameters for a two layer model. The second one will generalize this initialization process to L layers.

3.1 - 2-layer Neural Network

Exercise: Create and initialize the parameters of the 2-layer neural network.

Instructions:
- The model’s structure is: LINEAR -> RELU -> LINEAR -> SIGMOID.
- Use random initialization for the weight matrices. Use np.random.randn(shape)*0.01 with the correct shape.
- Use zero initialization for the biases. Use np.zeros(shape).

# GRADED FUNCTION: initialize_parameters

def initialize_parameters(n_x, n_h, n_y):
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer

    Returns:
    parameters -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """

    np.random.seed(1)

    ### START CODE HERE ### (≈ 4 lines of code)
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros((n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros((n_y, 1))
    ### END CODE HERE ###

    assert(W1.shape == (n_h, n_x))
    assert(b1.shape == (n_h, 1))
    assert(W2.shape == (n_y, n_h))
    assert(b2.shape == (n_y, 1))

    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}

    return parameters    
parameters = initialize_parameters(2,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
W1 = [[ 0.01624345 -0.00611756]
 [-0.00528172 -0.01072969]]
b1 = [[ 0.]
 [ 0.]]
W2 = [[ 0.00865408 -0.02301539]]
b2 = [[ 0.]]

Expected output:

W1 [[ 0.01624345 -0.00611756] [-0.00528172 -0.01072969]]
b1 [[ 0.] [ 0.]]
W2 [[ 0.00865408 -0.02301539]]
b2 [[ 0.]]

3.2 - L-layer Neural Network

The initialization for a deeper L-layer neural network is more complicated because there are many more weight matrices and bias vectors. When completing the initialize_parameters_deep, you should make sure that your dimensions match between each layer. Recall that n[l] is the number of units in layer l. Thus for example if the size of our input X is (12288,209) (with m=209 examples) then:

Shape of W Shape of b Activation Shape of Activation
Layer 1 (n[1],12288) (n[1],1) Z[1]=W[1]X+b[1] (n[1],209)
Layer 2 (n[2],n[1])