1. 程式人生 > >吳裕雄 python深度學習與實踐(16)

吳裕雄 python深度學習與實踐(16)

otl const and interact red 不同 .com rec 深度學習

import struct
import  numpy as np
import matplotlib.pyplot as plt

dateMat = np.ones((7,7))

kernel = np.array([[2,1,1],[3,0,1],[1,1,0]])

def convolve(dateMat,kernel):
    m,n = dateMat.shape
    km,kn = kernel.shape
    newMat = np.ones(((m - km + 1),(n - kn + 1)))
    tempMat = np.ones(((km),(kn)))
    
for row in range(m - km + 1): for col in range(n - kn + 1): for m_k in range(km): for n_k in range(kn): tempMat[m_k,n_k] = dateMat[(row + m_k),(col + n_k)] * kernel[m_k,n_k] newMat[row,col] = np.sum(tempMat) return newMat newMat
= convolve(dateMat,kernel) print(newMat)

技術分享圖片

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 3, 3, 1]))
filter1 = tf.Variable(tf.ones([1, 1, 1, 1]))

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding=
VALID) print(sess.run(conv2d))

技術分享圖片

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding=VALID)
    print(sess.run(conv2d))

技術分享圖片

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 1, 1, 1], padding=SAME)
    print(sess.run(conv2d))

技術分享圖片

import tensorflow as tf

input1 = tf.Variable(tf.random_normal([1, 5, 5, 5]))
filter1 = tf.Variable(tf.ones([3, 3, 5, 1]))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    conv2d = tf.nn.conv2d(input1, filter1, strides=[1, 2, 2, 1], padding=SAME)
    print(sess.run(conv2d))

技術分享圖片

import cv2
import numpy as np
import tensorflow as tf

img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3])

filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding=SAME)
    res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1

cv2.imshow("lover",res_image.astype(uint8))
cv2.waitKey()
import cv2
import numpy as np
import tensorflow as tf

img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3])

filter1 = tf.Variable(tf.ones([11, 11, 3, 1]))

init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding=SAME)
    res_image = sess.run(tf.reshape(res,[256,256]))/128 + 1

cv2.imshow("lover",res_image.astype(uint8))
cv2.waitKey()
import tensorflow as tf

data=tf.constant([
        [[3.0,2.0,3.0,4.0],
        [2.0,6.0,2.0,4.0],
        [1.0,2.0,1.0,5.0],
        [4.0,3.0,2.0,1.0]]
        ])
data = tf.reshape(data,[1,4,4,1])
maxPooling=tf.nn.max_pool(data, [1, 2, 2, 1], [1, 2, 2, 1], padding=VALID)

with tf.Session() as sess:
    print(sess.run(maxPooling))

技術分享圖片

import cv2
import numpy as np
import tensorflow as tf

img = cv2.imread("D:\\F\\TensorFlow_deep_learn\\data\\lena.jpg")
img = np.array(img,dtype=np.float32)
x_image=tf.reshape(img,[1,512,512,3])

filter1 = tf.Variable(tf.ones([7, 7, 3, 1]))
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    res = tf.nn.conv2d(x_image, filter1, strides=[1, 2, 2, 1], padding=SAME)
    res = tf.nn.max_pool(res, [1, 2, 2, 1], [1, 2, 2, 1], padding=VALID)
    res_image = sess.run(tf.reshape(res,[128,128]))/128 + 1

cv2.imshow("lover",res_image.astype(uint8))
cv2.waitKey()
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 聲明輸入圖片數據,類別
x = tf.placeholder(float, [None, 784])
y_ = tf.placeholder(float, [None, 10])
# 輸入圖片數據轉化
x_image = tf.reshape(x, [-1, 28, 28, 1])

#第一層卷積層,初始化卷積核參數、偏置值,該卷積層5*5大小,一個通道,共有6個不同卷積核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding=SAME)
h_conv1 = tf.nn.sigmoid(conv1 + bias1)

maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding=SAME)

filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding=SAME)
h_conv2 = tf.nn.sigmoid(conv2 + bias2)

maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding=SAME)

filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding=SAME)
h_conv3 = tf.nn.sigmoid(conv3 + bias3)

# 全連接層
# 權值參數
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 將卷積的產出展開
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神經網絡計算,並添加sigmoid激活函數
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 輸出層,使用softmax進行多分類
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 損失函數
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO優化算法來調整參數
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)

sess = tf.InteractiveSession()
# 測試正確率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# 所有變量進行初始化
sess.run(tf.initialize_all_variables())

# 獲取mnist數據
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True)

# 進行訓練
start_time = time.time()
for i in range(20000):
    # 獲取訓練數據
    batch_xs, batch_ys = mnist_data_set.train.next_batch(200)

    # 每叠代100個 batch,對當前訓練數據進行測試,輸出當前預測準確率
    if i % 2 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
        print("step %d, training accuracy %g" % (i, train_accuracy))
        # 計算間隔時間
        end_time = time.time()
        print(time: , (end_time - start_time))
        start_time = end_time
    # 訓練數據
    train_step.run(feed_dict={x: batch_xs, y_: batch_ys})

# 關閉會話
sess.close()

技術分享圖片

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 聲明輸入圖片數據,類別
x = tf.placeholder(float, [None, 784])
y_ = tf.placeholder(float, [None, 10])
# 輸入圖片數據轉化
x_image = tf.reshape(x, [-1, 28, 28, 1])

#第一層卷積層,初始化卷積核參數、偏置值,該卷積層5*5大小,一個通道,共有6個不同卷積核
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding=SAME)
h_conv1 = tf.nn.relu(conv1 + bias1)

maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding=SAME)

filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding=SAME)
h_conv2 = tf.nn.relu(conv2 + bias2)

maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding=SAME)

filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding=SAME)
h_conv3 = tf.nn.relu(conv3 + bias3)

# 全連接層
# 權值參數
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
# 偏置值
b_fc1 = tf.Variable(tf.truncated_normal([80]))
# 將卷積的產出展開
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
# 神經網絡計算,並添加relu激活函數
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 輸出層,使用softmax進行多分類
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_conv = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
# 損失函數
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 使用GDO優化算法來調整參數
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(cross_entropy)

sess = tf.InteractiveSession()
# 測試正確率
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# 所有變量進行初始化
sess.run(tf.initialize_all_variables())

# 獲取mnist數據
mnist_data_set = input_data.read_data_sets("D:\\F\\TensorFlow_deep_learn\\MNIST\\", one_hot=True)

# 進行訓練
start_time = time.time()
for i in range(20000):
    # 獲取訓練數據
    batch_xs, batch_ys = mnist_data_set.train.next_batch(200)

    # 每叠代100個 batch,對當前訓練數據進行測試,輸出當前預測準確率
    if i % 2 == 0:
        train_accuracy = accuracy.eval(feed_dict={x: batch_xs, y_: batch_ys})
        print("step %d, training accuracy %g" % (i, train_accuracy))
        # 計算間隔時間
        end_time = time.time()
        print(time: , (end_time - start_time))
        start_time = end_time
    # 訓練數據
    train_step.run(feed_dict={x: batch_xs, y_: batch_ys})

# 關閉會話
sess.close()

技術分享圖片

吳裕雄 python深度學習與實踐(16)