1. 程式人生 > >Tomcat如何使用執行緒池處理遠端併發請求

Tomcat如何使用執行緒池處理遠端併發請求

# Tomcat如何使用執行緒池處理遠端併發請求 通過了解學習tomcat如何處理併發請求,瞭解到執行緒池,鎖,佇列,unsafe類,下面的主要程式碼來自 java-jre: `sun.misc.Unsafe` `java.util.concurrent.ThreadPoolExecutor` `java.util.concurrent.ThreadPoolExecutor.Worker` `java.util.concurrent.locks.AbstractQueuedSynchronizer` `java.util.concurrent.locks.AbstractQueuedLongSynchronizer` `java.util.concurrent.LinkedBlockingQueue` tomcat: `org.apache.tomcat.util.net.NioEndpoint` `org.apache.tomcat.util.threads.ThreadPoolExecutor` `org.apache.tomcat.util.threads.TaskThreadFactory` `org.apache.tomcat.util.threads.TaskQueue` ## ThreadPoolExecutor 是一個執行緒池實現類,管理執行緒,減少執行緒開銷,可以用來提高任務執行效率, 構造方法中的引數有 ```java public ThreadPoolExecutor( int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) { } ``` corePoolSize 是核心執行緒數 maximumPoolSize 是最大執行緒數 keepAliveTime 非核心執行緒最大空閒時間(超過時間終止) unit 時間單位 workQueue 佇列,當任務過多時,先存放在佇列 threadFactory 執行緒工廠,建立執行緒的工廠 handler 決絕策略,當任務數過多,佇列不能再存放任務時,該如何處理,由此物件去處理。這是個介面,你可以自定義處理方式 ## ThreadPoolExecutor在Tomcat中http請求的應用 此執行緒池是tomcat用來在接收到遠端請求後,將每次請求單獨作為一個任務去處理,每次呼叫execute(Runnable) ### 初始化 `org.apache.tomcat.util.net.NioEndpoint` NioEndpoint初始化的時候,建立了執行緒池 ```java public void createExecutor() { internalExecutor = true; TaskQueue taskqueue = new TaskQueue(); //TaskQueue無界佇列,可以一直新增,因此handler 等同於無效 TaskThreadFactory tf = new TaskThreadFactory(getName() + "-exec-", daemon, getThreadPriority()); executor = new ThreadPoolExecutor(getMinSpareThreads(), getMaxThreads(), 60, TimeUnit.SECONDS,taskqueue, tf); taskqueue.setParent( (ThreadPoolExecutor) executor); } ``` 線上程池建立時,呼叫prestartAllCoreThreads(), 初始化核心工作執行緒worker,並啟動 ```java public int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; } ``` 當addWorker 數量等於corePoolSize時,addWorker(null,ture)會返回false,停止worker工作執行緒的建立 ### 提交任務到佇列 每次客戶端過來請求(http),就會提交一次處理任務, worker 從佇列中獲取任務執行,下面是任務放入佇列的邏輯程式碼 ThreadPoolExecutor.execute(Runnable) 提交任務: ```java public void execute(Runnable command) { if (command == null) throw new NullPointerException(); int c = ctl.get(); // worker數 是否小於 核心執行緒數 tomcat中初始化後,一般不滿足第一個條件,不會addWorker if (workerCountOf(c) < corePoolSize) { if (addWorker(command, true)) return; c = ctl.get(); } // workQueue.offer(command),將任務新增到佇列, if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) reject(command); else if (workerCountOf(recheck) == 0) addWorker(null, false); } else if (!addWorker(command, false)) reject(command); } ``` workQueue.offer(command) 完成了任務的提交(在tomcat處理遠端http請求時)。 #### workQueue.offer TaskQueue 是 BlockingQueue 具體實現類,workQueue.offer(command)實際程式碼: ```java public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node node = new Node(e); final ReentrantLock putLock = this.putLock; putLock.lock(); try { if (count.get() < capacity) { enqueue(node); //此處將任務新增到佇列 c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); } if (c == 0) signalNotEmpty(); return c >= 0; } // 新增任務到佇列 /** * Links node at end of queue. * * @param node the node */ private void enqueue(Node node) { // assert putLock.isHeldByCurrentThread(); // assert last.next == null; last = last.next = node; //連結串列結構 last.next = node; last = node } ``` 之後是worker的工作,worker在run方法中通過去getTask()獲取此處提交的任務,並執行完成任務。 ### 執行緒池如何處理新提交的任務 新增worker之後,提交任務,因為worker數量達到corePoolSize,任務都會將放入佇列,而worker的run方法則是迴圈獲取佇列中的任務(不為空時), worker run方法: ```java /** Delegates main run loop to outer runWorker */ public void run() { runWorker(this); } ``` #### 迴圈獲取佇列中的任務 runWorker(worker)方法 迴圈部分程式碼: ```java final void runWorker(Worker w) { Thread wt = Thread.currentThread(); Runnable task = w.firstTask; w.firstTask = null; w.unlock(); // allow interrupts boolean completedAbruptly = true; try { while (task != null || (task = getTask()) != null) { //迴圈獲取佇列中的任務 w.lock(); // 上鎖 try { // 執行前處理 beforeExecute(wt, task); // 佇列中的任務開始執行 task.run(); // 執行後處理 afterExecute(task, thrown); } finally { task = null; w.completedTasks++; w.unlock(); // 釋放鎖 } } completedAbruptly = false; } finally { processWorkerExit(w, completedAbruptly); } } ``` task.run()執行任務 ### 鎖運用 ThreadPoolExecutor 使用鎖主要保證兩件事情, 1.給佇列新增任務,保證其他執行緒不能操作佇列 2.獲取佇列的任務,保證其他執行緒不能同時操作佇列 #### 給佇列新增任務上鎖 ```java public boolean offer(E e) { if (e == null) throw new NullPointerException(); final AtomicInteger count = this.count; if (count.get() == capacity) return false; int c = -1; Node node = new Node(e); final ReentrantLock putLock = this.putLock; putLock.lock(); //上鎖 try { if (count.get() < capacity) { enqueue(node); c = count.getAndIncrement(); if (c + 1 < capacity) notFull.signal(); } } finally { putLock.unlock(); //釋放鎖 } if (c == 0) signalNotEmpty(); return c >
= 0; } ``` ### 獲取佇列任務上鎖 ```java private Runnable getTask() { boolean timedOut = false; // Did the last poll() time out? // ...省略 for (;;) { try { Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); //獲取佇列中一個任務 if (r != null) return r; timedOut = true; } catch (InterruptedException retry) { timedOut = false; } } } public E take() throws InterruptedException { E x; int c = -1; final AtomicInteger count = this.count; final ReentrantLock takeLock = this.takeLock; takeLock.lockInterruptibly(); // 上鎖 try { while (count.get() == 0) { notEmpty.await(); //如果佇列中沒有任務,等待 } x = dequeue(); c = count.getAndDecrement(); if (c >
1) notEmpty.signal(); } finally { takeLock.unlock(); // 釋放鎖 } if (c == capacity) signalNotFull(); return x; } ``` ### volatile 在併發場景這個關鍵字修飾成員變數很常見, 主要目的公共變數在被某一個執行緒修改時,對其他執行緒可見(實時) ## sun.misc.Unsafe 高併發相關類 執行緒池使用中,有平凡用到Unsafe類,這個類在高併發中,能做一些原子CAS操作,鎖執行緒,釋放執行緒等。 `sun.misc.Unsafe` 類是底層類,openjdk原始碼中有 ### 原子操作資料 java.util.concurrent.locks.AbstractQueuedSynchronizer 類中就有保證原子操作的程式碼 ```java protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); } ``` 對應Unsafe類的程式碼: ```java //對應的java底層,實際是native方法,對應C++程式碼 /** * Atomically update Java variable to x
if it is currently * holding expected. * @return true if successful */ public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x); ``` 方法的作用簡單來說就是 更新一個值,保證原子性操作 當你要操作一個物件`o`的一個成員變數`offset`時,修改o.offset, 高併發下為保證準確性,你在操作o.offset的時候,讀應該是正確的值,並且中間不能被別的執行緒修改來保證高併發的環境資料操作有效。 即 expected 期望值與記憶體中的值比較是一樣的expected == 記憶體中的值 ,則更新值為 x,返回true代表修改成功 否則,期望值與記憶體值不同,說明值被其他執行緒修改過,不能更新值為x,並返回false,告訴操作者此次原子性修改失敗。 ### 阻塞和喚醒執行緒 public native void park(boolean isAbsolute, long time); //阻塞當前執行緒 執行緒池的worker角色迴圈獲取佇列任務,如果佇列中沒有任務,worker.run 還是在等待的,不會退出執行緒,程式碼中用了`notEmpty.await() ` 中斷此worker執行緒,放入一個等待執行緒佇列(區別去任務佇列);當有新任務需要時,再`notEmpty.signal()`喚醒此執行緒 底層分別是 unsafe.park() 阻塞當前執行緒 public native void park(boolean isAbsolute, long time); unsafe.unpark() 喚醒執行緒 public native void unpark(Object thread); 這個操作是對應的,阻塞時,先將thread放入佇列,喚醒時,從佇列拿出被阻塞的執行緒,unsafe.unpark(thread)喚醒指定執行緒。 `java.util.concurrent.locks.AbstractQueuedLongSynchronizer.ConditionObject` 類中 通過連結串列存放執行緒資訊 ```java // 新增一個阻塞執行緒 private Node addConditionWaiter() { Node t = lastWaiter; // If lastWaiter is cancelled, clean out. if (t != null && t.waitStatus != Node.CONDITION) { unlinkCancelledWaiters(); t = lastWaiter; } Node node = new Node(Thread.currentThread(), Node.CONDITION); if (t == null) firstWaiter = node; else t.nextWaiter = node; lastWaiter = node; //將新阻塞的執行緒放到連結串列尾部 return node; } // 拿出一個被阻塞的執行緒 public final void signal() { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); Node first = firstWaiter; //連結串列中第一個阻塞的執行緒 if (first != null) doSignal(first); } // 拿到後,喚醒此執行緒 final boolean transferForSignal(Node node) { LockSupport.unpark(node.thread); return true; } public static void unpark(Thread thread) { if (thread != null) UNSAFE.unpark(thread);