1. 程式人生 > >[Visual Studio C++][Socket程式設計] Socket通訊原理詳細講解

[Visual Studio C++][Socket程式設計] Socket通訊原理詳細講解

(本文參考:https://www.cnblogs.com/wangcq/p/3520400.html  在原文的基礎上進行了擴充。)

 

 對TCP/IP、UDP、Socket程式設計這些詞你不會很陌生吧?隨著網路技術的發展,這些詞充斥著我們的耳朵。那麼我想問:

1.         什麼是TCP/IP、UDP?
2.         Socket在哪裡呢?
3.         Socket是什麼呢?
4.         你會使用它們嗎?

什麼是TCP/IP、UDP

         TCP/IP(Transmission Control Protocol/Internet Protocol)即傳輸控制協議/網間協議,是一個工業標準的協議集,它是為廣域網(WANs)設計的。
         UDP(User Data Protocol,使用者資料報協議)是與TCP相對應的協議。它是屬於TCP/IP協議族中的一種。
        這裡有一張圖,表明了這些協議的關係。

                             

TCP/IP協議族包括運輸層、網路層、鏈路層。現在你知道TCP/IP與UDP的關係了吧。

Socket在哪裡呢?
       在圖1中,我們沒有看到Socket的影子,那麼它到底在哪裡呢?還是用圖來說話,一目瞭然。

                                       

 原來Socket在這裡。

Socket是什麼呢?
       Socket是應用層與TCP/IP協議族通訊的中間軟體抽象層,它是一組介面。在設計模式中,Socket其實就是一個門面模式,它把複雜的TCP/IP協議族隱藏在Socket介面後面,對使用者來說,一組簡單的介面就是全部,讓Socket去組織資料,以符合指定的協議。

你會使用它們嗎?
       前人已經給我們做了好多的事了,網路間的通訊也就簡單了許多,但畢竟還是有挺多工作要做的。以前聽到Socket程式設計,覺得它是比較高深的程式設計知識,但是隻要弄清Socket程式設計的工作原理,神祕的面紗也就揭開了。
       一個生活中的場景。你要打電話給一個朋友,先撥號,朋友聽到電話鈴聲後提起電話,這時你和你的朋友就建立起了連線,就可以講話了。等交流結束,結束通話電話結束此次交談。    生活中的場景就解釋了這工作原理,也許TCP/IP協議族就是誕生於生活中,這也不一定。

                                   

先從伺服器端說起。伺服器端先初始化Socket,然後與埠繫結(bind),對埠進行監聽(listen),呼叫accept阻塞,等待客戶端連線。在這時如果有個客戶端初始化一個Socket,然後連線伺服器(connect),如果連線成功,這時客戶端與伺服器端的連線就建立了。客戶端傳送資料請求,伺服器端接收請求並處理請求,然後把迴應資料傳送給客戶端,客戶端讀取資料,最後關閉連線,一次互動結束。

====================================================================================================================

我們深諳資訊交流的價值,那網路中程序之間如何通訊,如我們每天開啟瀏覽器瀏覽網頁 時,瀏覽器的程序怎麼與web伺服器通訊的?當你用QQ聊天時,QQ程序怎麼與伺服器或你好友所在的QQ程序通訊?這些都得靠socket?那什麼是 socket?socket的型別有哪些?還有socket的基本函式,這些都是本文想介紹的。本文的主要內容如下:

  • 1、網路中程序之間如何通訊?

  • 2、Socket是什麼?

  • 3、socket的基本操作

    • 3.1、socket()函式

    • 3.2、bind()函式

    • 3.3、listen()、connect()函式

    • 3.4、accept()函式

    • 3.5、read()、write()函式等

    • 3.6、close()函式

  • 4、socket中TCP的三次握手建立連線詳解

  • 5、socket中TCP的四次握手釋放連線詳解

  • 6、一個例子

1、網路中程序之間如何通訊?

本地的程序間通訊(IPC)有很多種方式,但可以總結為下面4類:

  • 訊息傳遞(管道、FIFO、訊息佇列)

  • 同步(互斥量、條件變數、讀寫鎖、檔案和寫記錄鎖、訊號量)

  • 共享記憶體(匿名的和具名的)

  • 遠端過程呼叫(Solaris門和Sun RPC)

但這些都不是本文的主題!我們要討論的是網路中程序之間如何通訊?首要解決的問題是如何唯一標識一個程序,否則通訊無從談起!在本地可以通過程序PID來唯一標識一個程序,但是在網路中這是行不通的。其實TCP/IP協議族已經幫我們解決了這個問題,網路層的“ip地址”可以唯一標識網路中的主機,而傳輸層的“協議+埠”可以唯一標識主機中的應用程式(程序)。這樣利用三元組(ip地址,協議,埠)就可以標識網路的程序了,網路中的程序通訊就可以利用這個標誌與其它程序進行互動。

使用TCP/IP協議的應用程式通常採用應用程式設計介面:UNIX BSD的套接字(socket)和UNIX System V的TLI(已經被淘汰),來實現網路程序之間的通訊。就目前而言,幾乎所有的應用程式都是採用socket,而現在又是網路時代,網路中程序通訊是無處不在,這就是我為什麼說“一切皆socket”。

2、什麼是Socket?

上面我們已經知道網路中的程序是通過socket來通訊的,那什麼是socket呢?socket起源於Unix,而Unix/Linux基本哲學之一就是“一切皆檔案”,都可以用“開啟open –> 讀寫write/read –> 關閉close”模式來操作。我的理解就是Socket就是該模式的一個實現,socket即是一種特殊的檔案,一些socket函式就是對其進行的操作(讀/寫IO、開啟、關閉),這些函式我們在後面進行介紹。


socket一詞的起源

在組網領域的首次使用是在1970年2月12日釋出的文獻IETF RFC33中發現的,撰寫者為Stephen Carr、Steve Crocker和Vint Cerf。根據美國計算機歷史博物館的記載,Croker寫道:“名稱空間的元素都可稱為套接字介面。一個套接字介面構成一個連線的一端,而一個連線可完全由一對套接字介面規定。”計算機歷史博物館補充道:“這比BSD的套接字介面定義早了大約12年。”


3、socket的基本操作

既然socket是“open—write/read—close”模式的一種實現,那麼socket就提供了這些操作對應的函式介面。下面以TCP為例,介紹幾個基本的socket介面函式。

3.1、socket()函式

int socket(int domain, int type, int protocol);

socket函式對應於普通檔案的開啟操作。普通檔案的開啟操作返回一個檔案描述字,而socket()用於建立一個socket描述符(socket descriptor),它唯一標識一個socket。這個socket描述字跟檔案描述字一樣,後續的操作都有用到它,把它作為引數,通過它來進行一些讀寫操作。

正如可以給fopen的傳入不同引數值,以開啟不同的檔案。建立socket的時候,也可以指定不同的引數建立不同的socket描述符,socket函式的三個引數分別為:

  • domain:即協議域,又稱為協議族(family)。常用的協議族有,AF_INET、AF_INET6、AF_LOCAL(或稱AF_UNIX,Unix域socket)、AF_ROUTE等等。協議族決定了socket的地址型別,在通訊中必須採用對應的地址,如AF_INET決定了要用ipv4地址(32位的)與埠號(16位的)的組合、AF_UNIX決定了要用一個絕對路徑名作為地址。
  • type:指定socket型別。常用的socket型別有,SOCK_STREAM、SOCK_DGRAM、SOCK_RAW、SOCK_PACKET、SOCK_SEQPACKET等等(socket的型別有哪些?)。
  • protocol:故名思意,就是指定協議。常用的協議有,IPPROTO_TCP、IPPTOTO_UDP、IPPROTO_SCTP、IPPROTO_TIPC等,它們分別對應TCP傳輸協議、UDP傳輸協議、STCP傳輸協議、TIPC傳輸協議(這個協議我將會單獨開篇討論!)。

注意:並不是上面的type和protocol可以隨意組合的,如SOCK_STREAM不可以跟IPPROTO_UDP組合。當protocol為0時,會自動選擇type型別對應的預設協議。

當我們呼叫socket建立一個socket時,返回的socket描述字它存在於協議族(address family,AF_XXX)空間中,但沒有一個具體的地址。如果想要給它賦值一個地址,就必須呼叫bind()函式,否則當呼叫connect()、listen()時系統會自動隨機分配一個埠。

3.2、bind()函式

正如上面所說bind()函式把一個地址族中的特定地址賦給socket。例如對應AF_INET、AF_INET6就是把一個ipv4或ipv6地址和埠號組合賦給socket。

int bind(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

函式的三個引數分別為:

  • sockfd:即socket描述字,它是通過socket()函式建立了,唯一標識一個socket。bind()函式就是將給這個描述字繫結一個名字。
  • addr:一個const struct sockaddr *指標,指向要繫結給sockfd的協議地址。這個地址結構根據地址建立socket時的地址協議族的不同而不同,如ipv4對應的是:
    struct sockaddr_in {
        sa_family_t    sin_family; 
        in_port_t      sin_port;   
        struct in_addr sin_addr;   
    };
    
    
    struct in_addr {
        uint32_t       s_addr;     
    };
    
    ipv6對應的是:
    struct sockaddr_in6 { 
        sa_family_t     sin6_family;    
        in_port_t       sin6_port;      
        uint32_t        sin6_flowinfo;  
        struct in6_addr sin6_addr;      
        uint32_t        sin6_scope_id;  
    };
    
    struct in6_addr { 
        unsigned char   s6_addr[16];    
    };
    
    Unix域對應的是:
    #define UNIX_PATH_MAX    108
    
    struct sockaddr_un { 
        sa_family_t sun_family;                
        char        sun_path[UNIX_PATH_MAX];   
    };
    
  • addrlen:對應的是地址的長度。

通常伺服器在啟動的時候都會繫結一個眾所周知的地址(如ip地址+埠號),用於提供服務,客戶就可以通過它來接連伺服器;而客戶端就不用指定,有系統自動分配一個埠號和自身的ip地址組合。這就是為什麼通常伺服器端在listen之前會呼叫bind(),而客戶端就不會呼叫,而是在connect()時由系統隨機生成一個。


網路位元組序與主機位元組序

主機位元組序就是我們平常說的大端和小端模式:不同的CPU有不同的位元組序型別,這些位元組序是指整數在記憶體中儲存的順序,這個叫做主機序。引用標準的Big-Endian和Little-Endian的定義如下:

  a) Little-Endian就是低位位元組排放在記憶體的低地址端,高位位元組排放在記憶體的高地址端。

  b) Big-Endian就是高位位元組排放在記憶體的低地址端,低位位元組排放在記憶體的高地址端。

網路位元組序:4個位元組的32 bit值以下面的次序傳輸:首先是0~7bit,其次8~15bit,然後16~23bit,最後是24~31bit。這種傳輸次序稱作大端位元組序。由於TCP/IP首部中所有的二進位制整數在網路中傳輸時都要求以這種次序,因此它又稱作網路位元組序。位元組序,顧名思義位元組的順序,就是大於一個位元組型別的資料在記憶體中的存放順序,一個位元組的資料沒有順序的問題了。

所以: 在將一個地址繫結到socket的時候,請先將主機位元組序轉換成為網路位元組序,而不要假定主機位元組序跟網路位元組序一樣使用的是Big-Endian。由於 這個問題曾引發過血案!公司專案程式碼中由於存在這個問題,導致了很多莫名其妙的問題,所以請謹記對主機位元組序不要做任何假定,務必將其轉化為網路位元組序再 賦給socket。


3.3、listen()、connect()函式

如果作為一個伺服器,在呼叫socket()、bind()之後就會呼叫listen()來監聽這個socket,如果客戶端這時呼叫connect()發出連線請求,伺服器端就會接收到這個請求。

int listen(int sockfd, int backlog);
int connect(int sockfd, const struct sockaddr *addr, socklen_t addrlen);

listen函式的第一個引數即為要監聽的socket描述字,第二個引數為相應socket可以排隊的最大連線個數。socket()函式建立的socket預設是一個主動型別的,listen函式將socket變為被動型別的,等待客戶的連線請求。

connect函式的第一個引數即為客戶端的socket描述字,第二引數為伺服器的socket地址,第三個引數為socket地址的長度。客戶端通過呼叫connect函式來建立與TCP伺服器的連線。

                                                                             connect函式表

標頭檔案

<sys/types.h>

<sys/socket.h>

函式形式 int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);
返回值

成功

失敗

是否設定errno

0

−1

3.4、accept()函式

TCP伺服器端依次呼叫socket()、bind()、listen()之後,就會監聽指定的socket地址了。TCP客戶端依次呼叫socket()、connect()之後就想TCP伺服器傳送了一個連線請求。TCP伺服器監聽到這個請求之後,就會呼叫accept()函式取接收請求,這樣連線就建立好了。之後就可以開始網路I/O操作了,即類同於普通檔案的讀寫I/O操作。

int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

          accept函式的第一個引數為伺服器的socket描述字,第二個引數為指向structsockaddr *的指標,用於返回客戶端的協議地址,第三個引數為協議地址的長度。如果accpet成功,那麼其返回值是由核心自動生成的一個全新的描述字,代表與返回客戶的TCP連線。

          注意:accept的第一個引數為伺服器的socket描述字,是伺服器開始呼叫socket()函式生成的,稱為監聽socket描述字;而accept函式返回的是已連線的socket描述字。一個伺服器通常通常僅僅只建立一個監聽socket描述字,它在該伺服器的生命週期內一直存在。核心為每個由伺服器程序接受的客戶連線建立了一個已連線socket描述字,當伺服器完成了對某個客戶的服務,相應的已連線socket描述字就被關閉。

           當某一套介面s上發生了一個已命名的網路事件,應用程式視窗hWnd會接收到訊息wMsg.wParam引數標識了網路事件發生的套介面.lParam的低字指明瞭發生的網路事件.lParam的高字則含有一個錯誤程式碼.該錯誤程式碼可以是winsock.h中定義的任何錯誤.
        錯誤程式碼和事件可以通過WSAGETSELECTERRORH和WSAGETSELECTEVENT巨集從lParam中取出.定義如下:
                  #define WSAGETSELECTERROR(lParam)            HIWORD(lParam)
                  #define WSAGETSELECTEVENT(lParam)            LOWORD(lParam)

3.5、read()、write()等函式

萬事具備只欠東風,至此伺服器與客戶已經建立好連線了。可以呼叫網路I/O進行讀寫操作了,即實現了網咯中不同程序之間的通訊!網路I/O操作有下面幾組:

  • read()/write()
  • recv()/send()
  • readv()/writev()
  • recvmsg()/sendmsg()
  • recvfrom()/sendto()

我推薦使用recvmsg()/sendmsg()函式,這兩個函式是最通用的I/O函式,實際上可以把上面的其它函式都替換成這兩個函式。它們的宣告如下:

       #include 

       ssize_t read(int fd, void *buf, size_t count);
       ssize_t write(int fd, const void *buf, size_t count);

       #include 
       #include 

       ssize_t send(int sockfd, const void *buf, size_t len, int flags);
       ssize_t recv(int sockfd, void *buf, size_t len, int flags);

       ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
                      const struct sockaddr *dest_addr, socklen_t addrlen);
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
                        struct sockaddr *src_addr, socklen_t *addrlen);

       ssize_t sendmsg(int sockfd, const struct msghdr *msg, int flags);
       ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

read函式是負責從fd中讀取內容.當讀成功時,read返回實際所讀的位元組數,如果返回的值是0表示已經讀到檔案的結束了,小於0表示出現了錯誤。如果錯誤為EINTR說明讀是由中斷引起的,如果是ECONNREST表示網路連接出了問題。

write函式將buf中的nbytes位元組內容寫入檔案描述符fd.成功時返回寫的位元組 數。失敗時返回-1,並設定errno變數。在網路程式中,當我們向套接字檔案描述符寫時有倆種可能。1)write的返回值大於0,表示寫了部分或者是 全部的資料。2)返回的值小於0,此時出現了錯誤。我們要根據錯誤型別來處理。如果錯誤為EINTR表示在寫的時候出現了中斷錯誤。如果為EPIPE表示 網路連接出現了問題(對方已經關閉了連線)。

其它的我就不一一介紹這幾對I/O函數了,具體參見man文件或者baidu、Google,下面的例子中將使用到send/recv。

3.6、close()函式

在伺服器與客戶端建立連線之後,會進行一些讀寫操作,完成了讀寫操作就要關閉相應的socket描述字,好比操作完開啟的檔案要呼叫fclose關閉開啟的檔案。

#include 
int close(int fd);

close一個TCP socket的預設行為時把該socket標記為已關閉,然後立即返回到呼叫程序。該描述字不能再由呼叫程序使用,也就是說不能再作為read或write的第一個引數。

注意:close操作只是使相應socket描述字的引用計數-1,只有當引用計數為0的時候,才會觸發TCP客戶端向伺服器傳送終止連線請求。

 

4、socket中TCP的三次握手建立連線詳解

我們知道tcp建立連線要進行“三次握手”,即交換三個分組。大致流程如下:

  • 客戶端向伺服器傳送一個SYN J
  • 伺服器向客戶端響應一個SYN K,並對SYN J進行確認ACK J+1
  • 客戶端再向伺服器發一個確認ACK K+1

只有就完了三次握手,但是這個三次握手發生在socket的那幾個函式中呢?請看下圖:

                                     image

從圖中可以看出,當客戶端呼叫connect時,觸發了連線請求,向伺服器傳送了SYN J包,這時connect進入阻塞狀態;伺服器監聽到連線請求,即收到SYN J包,呼叫accept函式接收請求向客戶端傳送SYN K ,ACK J+1,這時accept進入阻塞狀態;客戶端收到伺服器的SYN K ,ACK J+1之後,這時connect返回,並對SYN K進行確認;伺服器收到ACK K+1時,accept返回,至此三次握手完畢,連線建立。


總結:客戶端的connect在三次握手的第二個次返回,而伺服器端的accept在三次握手的第三次返回。

5、socket中TCP的四次握手釋放連線詳解

上面介紹了socket中TCP的三次握手建立過程,及其涉及的socket函式。現在我們介紹socket中的四次握手釋放連線的過程,請看下圖:

                                                              image

圖示過程如下:

  • 某個應用程序首先呼叫close主動關閉連線,這時TCP傳送一個FIN M;

  • 另一端接收到FIN M之後,執行被動關閉,對這個FIN進行確認。它的接收也作為檔案結束符傳遞給應用程序,因為FIN的接收意味著應用程序在相應的連線上再也接收不到額外資料;

  • 一段時間之後,接收到檔案結束符的應用程序呼叫close關閉它的socket。這導致它的TCP也傳送一個FIN N;

  • 接收到這個FIN的源傳送端TCP對它進行確認。

這樣每個方向上都有一個FIN和ACK。

6.下面給出實現的一個例項

 

首先,先給出實現的截圖

                               

伺服器端程式碼如下:

 

 

 

[cpp] view plaincopyprint?

  1. #include "InitSock.h"
  2. #include
  3. #include
  4. using namespace std;
  5. CInitSock initSock; // 初始化Winsock庫
  6. int main()
  7. {
  8. // 建立套節字
  9. SOCKET sListen = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
  10. //用來指定套接字使用的地址格式,通常使用AF_INET
  11. //指定套接字的型別,若是SOCK_DGRAM,則用的是udp不可靠傳輸
  12. //配合type引數使用,指定使用的協議型別(當指定套接字型別後,可以設定為0,因為預設為UDP或TCP)
  13. if(sListen == INVALID_SOCKET)
  14. {
  15. printf("Failed socket() \n");
  16. return 0;
  17. }
  18. // 填充sockaddr_in結構 ,是個結構體
  19. sockaddr_in sin;
  20. sin.sin_family = AF_INET;
  21. sin.sin_port = htons(4567); //1024 ~ 49151:普通使用者註冊的埠號
  22. sin.sin_addr.S_un.S_addr = INADDR_ANY;
  23. // 繫結這個套節字到一個本地地址
  24. if(::bind(sListen, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR)
  25. {
  26. printf("Failed bind() \n");
  27. return 0;
  28. }
  29. // 進入監聽模式
  30. //2指的是,監聽佇列中允許保持的尚未處理的最大連線數
  31. if(::listen(sListen, 2) == SOCKET_ERROR)
  32. {
  33. printf("Failed listen() \n");
  34. return 0;
  35. }
  36. // 迴圈接受客戶的連線請求
  37. sockaddr_in remoteAddr;
  38. int nAddrLen = sizeof(remoteAddr);
  39. SOCKET sClient = 0;
  40. char szText[] = " TCP Server Demo! \r\n";
  41. while(sClient==0)
  42. {
  43. // 接受一個新連線
  44. //((SOCKADDR*)&remoteAddr)一個指向sockaddr_in結構的指標,用於獲取對方地址
  45. sClient = ::accept(sListen, (SOCKADDR*)&remoteAddr, &nAddrLen);
  46. if(sClient == INVALID_SOCKET)
  47. {
  48. printf("Failed accept()");
  49. }
  50. printf("接受到一個連線:%s \r\n", inet_ntoa(remoteAddr.sin_addr));
  51. continue ;
  52. }
  53. while(TRUE)
  54. {
  55. // 向客戶端傳送資料
  56. gets(szText) ;
  57. ::send(sClient, szText, strlen(szText), 0);
  58. // 從客戶端接收資料
  59. char buff[256] ;
  60. int nRecv = ::recv(sClient, buff, 256, 0);
  61. if(nRecv > 0)
  62. {
  63. buff[nRecv] = '\0';
  64. printf(" 接收到資料:%s\n", buff);
  65. }
  66. }
  67. // 關閉同客戶端的連線
  68. ::closesocket(sClient);
  69. // 關閉監聽套節字
  70. ::closesocket(sListen);
  71. return 0;
  72. }

 


客戶端程式碼:

 

 

 

[cpp] view plaincopyprint?

  1. #include "InitSock.h"
  2. #include
  3. #include
  4. using namespace std;
  5. CInitSock initSock; // 初始化Winsock庫
  6. int main()
  7. {
  8. // 建立套節字
  9. SOCKET s = ::socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
  10. if(s == INVALID_SOCKET)
  11. {
  12. printf(" Failed socket() \n");
  13. return 0;
  14. }
  15. // 也可以在這裡呼叫bind函式繫結一個本地地址
  16. // 否則系統將會自動安排
  17. // 填寫遠端地址資訊
  18. sockaddr_in servAddr;
  19. servAddr.sin_family = AF_INET;
  20. servAddr.sin_port = htons(4567);
  21. // 注意,這裡要填寫伺服器程式(TCPServer程式)所在機器的IP地址
  22. // 如果你的計算機沒有聯網,直接使用127.0.0.1即可
  23. servAddr.sin_addr.S_un.S_addr = inet_addr("127.0.0.1");
  24. if(::connect(s, (sockaddr*)&servAddr, sizeof(servAddr)) == -1)
  25. {
  26. printf(" Failed connect() \n");
  27. return 0;
  28. }
  29. char buff[256];
  30. char szText[256] ;
  31. while(TRUE)
  32. {
  33. //從伺服器端接收資料
  34. int nRecv = ::recv(s, buff, 256, 0);
  35. if(nRecv > 0)
  36. {
  37. buff[nRecv] = '\0';
  38. printf("接收到資料:%s\n", buff);
  39. }
  40. // 向伺服器端傳送資料
  41. gets(szText) ;
  42. szText[255] = '\0';
  43. ::send(s, szText, strlen(szText), 0) ;
  44. }
  45. // 關閉套節字
  46. ::closesocket(s);
  47. return 0;
  48. }

 


封裝的InitSock.h

 

 

 

[cpp] view plaincopyprint?

  1. #include
  2. #include
  3. #include
  4. #include
  5. #pragma comment(lib, "WS2_32") // 連結到WS2_32.lib
  6. class CInitSock
  7. {
  8. public:
  9. CInitSock(BYTE minorVer = 2, BYTE majorVer = 2)
  10. {
  11. // 初始化WS2_32.dll
  12. WSADATA wsaData;
  13. WORD sockVersion = MAKEWORD(minorVer, majorVer);
  14. if(::WSAStartup(sockVersion, &wsaData) != 0)
  15. {
  16. exit(0);
  17. }
  18. }
  19. ~CInitSock()
  20. {
  21. ::WSACleanup();
  22. }
  23. };