1. 程式人生 > >deeplearning.ai課程作業:Course 1 Week 3

deeplearning.ai課程作業:Course 1 Week 3

deeplearning.ai課程作業:Course 1 Week 3

第三週的作業,親測在Coursera上可行,把資料集下載到自己電腦上單獨啟動jupyter來測試就 可行不怎麼可行,問題主要出在scatter函式裡面的引數c=Y在Coursera上是沒問題的,在自己電腦上跑就有問題,雖然不影響結果,只是一個視覺化操作。

Planar data classification with one hidden layer

1 - Packages

Let’s first import all the packages that you will need during this assignment.

  • numpy is the fundamental package for scientific computing with Python.
  • sklearn provides simple and efficient tools for data mining and data analysis.
  • matplotlib is a library for plotting graphs in Python.
  • testCases_v2 provides some test examples to assess the correctness of your functions
  • planar_utils provide various useful functions used in this assignment
# Package imports
import numpy as np 
import matplotlib.pyplot as plt 
from testCases_v2 import * 
import sklearn 
import sklearn.datasets 
import sklearn.linear_model 
from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets 

%matplotlib inline 

np.random.seed(1) # set a seed so that the results are consistent

請點這裡下載資料集及相關函式.


把壓縮包下載後,直接將裡面的兩個檔案planar_utils.pytestCases_v2.py放到home路徑下即可,絕對路徑為:/home/will


2 - Dataset

First, let’s get the dataset you will work on. The following code will load a “flower” 2-class dataset into variables X and Y.

def load_planar_dataset(): 
	np.random.seed(1) 
	m = 400 # 樣本數量 
	N = int(m/2) # 每個類別的樣本量 
	D = 2 # 維度數 
	X = np.zeros((m,D)) # 初始化X 
	Y = np.zeros((m,1), dtype='uint8') # 初始化Y 
	a = 4 # 花兒的最大長度 
parameters = initialize_parameters(3,2,1)
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
	for j in range(2): 
		ix = range(N*j,N*(j+1)) 
		t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta 
		r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius 
		X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] 
		Y[ix] = j 
	
	X = X.T 
	Y = Y.T 
	
	return X, Y 
X, Y = load_planar_dataset()

Visualize the dataset using matplotlib. The data looks like a “flower” with some red (label y=0) and some blue (y=1) points. Your goal is to build a model to fit this data.

# Visualize the data:
plt.scatter(X[0, :], X[1, :], c=Y, s=40, cmap=plt.cm.Spectral);

flower
在Coursera上可以看到這種效果


視覺化資料這裡,感覺這句程式碼有點問題,輸入之後會報錯,問題應該是再c這個引數,它的scatter函式裡面設定散點顏色的引數,如果把這個引數改成c='r'就可以檢視散點圖了,當然只有一種顏色,暫時不知道怎麼修改,如果有大神知道,請告知,O(∩_∩)O謝謝。
red


You have:

  • a numpy-array (matrix) X that contains your features (x1, x2)
  • a numpy-array (vector) Y that contains your labels (red:0, blue:1).

Lets first get a better sense of what our data is like.

Exercise: How many training examples do you have? In addition, what is the shape of the variables X and Y?

Hint: How do you get the shape of a numpy array? (help)

### START CODE HERE ### (≈ 3 lines of code) 
shape_X = X.shape 
shape_Y = Y.shape 
m = X.shape[1] # training set size 
### END CODE HERE ### 

print ('The shape of X is: ' + str(shape_X)) 
print ('The shape of Y is: ' + str(shape_Y)) 
print ('I have m = %d training examples!' % (m))
The shape of X is: (2, 400)
The shape of Y is: (1, 400)
I have m = 400 training examples!

3 - Simple Logistic Regression

Before building a full neural network, lets first see how logistic regression performs on this problem. You can use sklearn’s built-in functions to do that. Run the code below to train a logistic regression classifier on the dataset.

# Plot the decision boundary for logistic regression 
plot_decision_boundary(lambda x: clf.predict(x), X, Y) 
plt.title("Logistic Regression") 
# Print accuracy 
LR_predictions = clf.predict(X.T) 
print ('Accuracy of logistic regression: %d ' % float((np.dot(Y,LR_predictions) + np.dot(1-Y,1-LR_predictions))/float(Y.size)*100) + '% ' + "(percentage of correctly labelled datapoints)")
Accuracy of logistic regression: 47 % (percentage of correctly labelled datapoints)

flower2
在Coursera可以看到上面的效果,在自己電腦跑就只能改一下引數才顯示成功。
lr
plot_decision_boundary:

def plot_decision_boundary(model, X, y): 
    # Set min and max values and give it some padding 
    x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 
    y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 
    h = 0.01 
    # Generate a grid of points with distance h between them 
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) 
    # Predict the function value for the whole grid 
    Z = model(np.c_[xx.ravel(), yy.ravel()]) 
    Z = Z.reshape(xx.shape) 
    # Plot the contour and training examples 
    plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) 
    plt.ylabel('x2') 
    plt.xlabel('x1') 
    plt.scatter(X[0, :], X[1, :], c='r', cmap=plt.cm.Spectral)

又是這個問題,不把c引數修改,就會報錯,不顯示所有樣本點 TAT


Interpretation: The dataset is not linearly separable, so logistic regression doesn’t perform well. Hopefully a neural network will do better. Let’s try this now!

4 - Neural Network model

Logistic regression did not work well on the “flower dataset”. You are going to train a Neural Network with a single hidden layer.

Here is our model:
lr
Mathematically:

For one example   x ( i ) \ x^{(i)} :
  z [ 1 ] ( i ) = W [ 1 ] x ( i ) + b [ 1 ] ( i ) \ z^{[1](i)}=W^{[1]}x^{(i)}+b^{[1](i)}
  a [ 1 ] ( i ) = t a n h ( z [ 1 ] ( i ) ) \ a^{[1](i)}=tanh(z^{[1](i)})
  z [ 2 ] ( i ) = W [ 2 ] a [ 1 ] ( i ) + b [ 2 ] ( i ) \ z^{[2](i)}=W^{[2]}a^{[1](i)}+b^{[2](i)}
  y ^ ( i ) = a [ 2 ] ( i ) = σ ( z [ 2 ] ( i ) ) \ \hat{y}^{(i)}=a^{[2](i)}=\sigma(z^{[2](i)})
  y p r e d i c t i o n ( i ) = { 1 i f   a [ 2 ] ( i ) > 0.5 0 o t h e r w i s e \ y^{(i)}_{prediction}=\begin{cases} 1 & if\ a^{[2](i)}>0.5\\ 0 & otherwise \end{cases}
Given the predictions on all the examples, you can also compute the cost   J \ J as follows:
  J = 1 m i = 1 m ( y ( i ) l o g ( a [ 2 ] ( i ) + ( 1 y ( i ) ) l o g ( 1 a [ 2 ] ( i ) ) ) \ J=-\frac{1}{m}\sum_{i=1}^m (y^{(i)}log(a^{[2](i)}+(1-y^{(i)})log(1-a^{[2](i)}))

Reminder: The general methodology to build a Neural Network is to:

  1. Define the neural network structure ( # of input units, # of hidden units, etc).
  2. Initialize the model’s parameters
  3. Loop:
  • Implement forward propagation
  • Compute loss
  • Implement backward propagation to get the gradients
  • Update parameters (gradient descent)

You often build helper functions to compute steps 1-3 and then merge them into one function we call nn_model(). Once you’ve built nn_model() and learnt the right parameters, you can make predictions on new data.

4.1 - Defining the neural network structure

Exercise: Define three variables:

  • n_x: the size of the input layer
  • n_h: the size of the hidden layer (set this to 4)
  • n_y: the size of the output layer

Hint: Use shapes of X and Y to find n_x and n_y. Also, hard code the hidden layer size to be 4.

# GRADED FUNCTION: layer_sizes 
def layer_sizes(X, Y): 
    """
    Arguments:
    X -- input dataset of shape (input size, number of examples)
    Y -- labels of shape (output size, number of examples)

    Returns:
    n_x -- the size of the input layer
    n_h -- the size of the hidden layer
    n_y -- the size of the output layer
    """ 
    ### START CODE HERE ### (≈ 3 lines of code) 
    n_x = X.shape[0] # size of input layer 
    n_h = 4 
    n_y = Y.shape[0]# size of output layer 
    ### END CODE HERE ### 
    return (n_x, n_h, n_y)
X_assess, Y_assess = layer_sizes_test_case() 
(n_x, n_h, n_y) = layer_sizes(X_assess, Y_assess) 
print("The size of the input layer is: n_x = " + str(n_x)) 
print("The size of the hidden layer is: n_h = " + str(n_h)) 
print("The size of the output layer is: n_y = " + str(n_y))
The size of the input layer is: n_x = 5
The size of the hidden layer is: n_h = 4
The size of the output layer is: n_y = 2

4.2 - Initialize the model’s parameters

Exercise: Implement the function initialize_parameters().

Instructions:

  • Make sure your parameters’ sizes are right. Refer to the neural network figure above if needed.
  • You will initialize the weights matrices with random values.
  • Use: np.random.randn(a,b) * 0.01 to randomly initialize a matrix of shape (a,b).
  • You will initialize the bias vectors as zeros.
  • Use: np.zeros((a,b)) to initialize a matrix of shape (a,b) with zeros.
# GRADED FUNCTION: initialize_parameters 
def initialize_parameters(n_x, n_h, n_y): 
    """
    Argument:
    n_x -- size of the input layer
    n_h -- size of the hidden layer
    n_y -- size of the output layer

    Returns:
    params -- python dictionary containing your parameters:
                    W1 -- weight matrix of shape (n_h, n_x)
                    b1 -- bias vector of shape (n_h, 1)
                    W2 -- weight matrix of shape (n_y, n_h)
                    b2 -- bias vector of shape (n_y, 1)
    """ 
    np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random. 
    ### START CODE HERE ### (≈ 4 lines of code) 
    W1 = np.random.randn(n_h, n_x) 
    b1 = np.zeros((n_h, 1)) 
    W2 = np.random.randn(n_y, n_h) 
    b2 = np.zeros((n_y, 1)) 
    ### END CODE HERE ### 
    
    assert (W1.shape == (n_h, n_x)) 
    assert (b1.shape == (n_h, 1)) 
    assert (W2.shape == (n_y, n_h)) 
    assert (b2.shape == (n_y, 1)) 
    
    parameters = {"W1": W1, 
    			    "b1" : b1, 
    			    "W2": W2, 
    			    "b2" : b2} 
    return parameters
n_x, n_h, n_y = initialize_parameters_test_case() 

parameters = initialize_parameters(n_x, n_h, n_y) 
print("W1 = " + str(parameters["W1"])) 
print("b1 = " + str(parameters["b1"])) 
print("W2 = " + str(parameters["W2"])) 
print("b2 = " + str(parameters["b2"]))
W1 = [[-0.41675785 -0.05626683]
 [-2.1361961   1.64027081]
 [-1.79343559 -0.84174737]
 [ 0.50288142 -1.24528809]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-1.05795222 -0.90900761  0.55145404  2.29220801]]
b2 = [[0.]]

4.3 - The Loop

Question: Implement forward_propagation().

Instructions:

  • Look above at the mathematical representation of your classifier.
  • You can use the function sigmoid(). It is built-in (imported) in the notebook.
  • You can use the function np.tanh(). It is part of the numpy library.
  • The steps you have to implement are:
  1. Retrieve each parameter from the dictionary “parameters” (which is the output of initialize_parameters()) by using parameters[".."].
  2. Implement Forward Propagation. Compute   Z [ 1 ] , A [ 1 ] , Z [ 2 ] \ Z^{[1]},A^{[1]},Z^{[2]}
    and   A [ 2 ] \ A^{[2]} (the vector of all your predictions on all the examples in the training set).
  • Values needed in the backpropagation are stored in “cache“. The cache will be given as an input to the backpropagation function.
# GRADED FUNCTION: forward_propagation 
def forward_propagation(X, parameters): 
    """
    Argument:
    X -- input data of size (n_x, m)
    parameters -- python dictionary containing your parameters (output of initialization function)

    Returns:
    A2 -- The sigmoid output of the second activation
    cache -- a dictionary containing "Z1", "A1", "Z2" and "A2"
    """ 
    # Retrieve each parameter from the dictionary "parameters" 
    ### START CODE HERE ### (≈ 4 lines of code) 
    W1 = parameters["W1"] 
    b1 = parameters["b1"] 
    W2 = parameters["W2"] 
    b2 = parameters["b2"] 
    ### END CODE HERE ### 

    # Implement Forward Propagation to calculate A2 (probabilities) 
    ### START CODE HERE ### (≈ 4 lines of code) 
    Z1 = np.dot(W1, X) + b1 
    A1 = np.tanh(Z1) 
    Z2 = np.dot(W2, A1) + b2 
    A2 = sigmoid(Z2) 
    ### END CODE HERE ### 
    
    assert(A2.shape == (1, X.shape[1])) 
    
    cache = {"Z1": Z1, 
    		   "A1": A1, 
    		   "Z2": Z2, 
    		   "A2": A2} 
     return A2, cache
X_assess, parameters = forward_propagation_test_case() 
A2, cache = forward_propagation(X_assess, parameters) 

# Note: we use the mean here just to make sure that your output matches ours. 
print(np.mean(cache['Z1']) ,np.mean(cache['A1']),np.mean(cache['Z2']),np.mean(cache['A2']))
0.26281864019752443 0.09199904522700113 -1.3076660128732143 0.21287768171914198

Exercise: Implement compute_cost() to compute the value of the cost   J \ J .

Instructions:

  • There are many ways to implement the cross-entropy loss. To help you, we give you how we would have implemented
      i = 0 m y ( i ) l o g ( a [ 2 ] ( i ) ) \ \sum_{i=0}^m y^{(i)}log(a^{[2](i)}) :
logprobs = np.multiply(np.log(A2),Y)
cost = - np.sum(logprobs)                # no need to use a for loop!

(you can use either np.multiply() and then np.sum() or directly np.dot()).

# GRADED FUNCTION: compute_cost 
def compute_cost(A2, Y, parameters): 
    """
    Computes the cross-entropy cost given in equation (13)

    Arguments:
    A2 -- The sigmoid output of the second activation, of shape (1, number of examples)
    Y -- "true" labels vector of shape (1, number of examples)
    parameters -- python dictionary containing your parameters W1, b1, W2 and b2

    Returns:
    cost -- cross-entropy cost given equation (13)
    """ 
    m = Y.shape[1] # number of example 
    
    # Compute the cross-entropy cost 
    ### START CODE HERE ### (≈ 2 lines of code) 
    logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1-A2), (1-Y)) 
    cost = -(1.0/m)*np.sum(logprobs) 
    ### END CODE HERE ### 
    
    cost = np.squeeze(cost) # makes sure cost is the dimension we expect. 
                                           # E.g., turns [[17]] into 17 
    assert(isinstance(cost, float)) 
    
    return cost
A2, Y_assess, parameters = compute_cost_test_case()

print("cost = " + str(compute_cost(A2, Y_assess, parameters)))
cost = 0.6930587610394646

Using the cache computed during forward propagation, you can now implement backward propagation.

Question: Implement the function backward_propagation().

Instructions:
Backpropagation is usually the hardest (most mathematical) part in deep learning. To help you, here again is the slide from the lecture on backpropagation. You’ll want to use the six equations on the right of this slide, since you are building a vectorized implementation.
DL