1. 程式人生 > >OkHttp3實現原理分析(二)

OkHttp3實現原理分析(二)

概述

前言:前一節https://mp.csdn.net/postedit/84941253,總結了一下OkHttp3的簡單使用教程。在專案中使用了這個網路框架,在看完基本的原始碼之後,還是想總結一下OkHttp的實現流程。在學習框架的過程中,從使用方法出發,首先是怎麼使用,其次是我們使用的功能在內部是如何實現的,實現方案上有什麼技巧,有什麼正規化。

OkHttp的整體流程

整個流程是:通過OkHttpClient將構建的Request轉換為Call,然後在RealCall中進行非同步或同步任務,最後通過一些的攔截器interceptor發出網路請求和得到返回的response

。總體流程用下面的圖表示

Okhttp3整體流程.png

 

拆元件

在整體流程中,主要的元件是OkHttpClient,其次有Call,RealCall,Disptcher,各種InterceptorsRequest和Response元件。Request和Response已經在上一篇的對其結構原始碼進行了分析。

1. OkHttpClient物件:網路請求的主要操控者

建立OkHttpClient物件

//通過Builder構造OkHttpClient
 OkHttpClient.Builder builder = new OkHttpClient.Builder()
                .connectTimeout(20, TimeUnit.SECONDS)
                .writeTimeout(20, TimeUnit.SECONDS)
                .readTimeout(20, TimeUnit.SECONDS);
        return builder.build();

OkHttpClient.Builder類有很多變數,OkHttpClient有很多的成員變數:

final Dispatcher dispatcher;  //重要:分發器,分發執行和關閉由request構成的Call
    final Proxy proxy;  //代理
    final List<Protocol> protocols; //協議
    final List<ConnectionSpec> connectionSpecs; //傳輸層版本和連線協議
    final List<Interceptor> interceptors; //重要:攔截器
    final List<Interceptor> networkInterceptors; //網路攔截器
    final ProxySelector proxySelector; //代理選擇
    final CookieJar cookieJar; //cookie
    final Cache cache; //快取
    final InternalCache internalCache;  //內部快取
    final SocketFactory socketFactory;  //socket 工廠
    final SSLSocketFactory sslSocketFactory; //安全套接層socket 工廠,用於HTTPS
    final CertificateChainCleaner certificateChainCleaner; // 驗證確認響應證書 適用 HTTPS 請求連線的主機名。
    final HostnameVerifier hostnameVerifier;    //  主機名字確認
    final CertificatePinner certificatePinner;  //  證書鏈
    final Authenticator proxyAuthenticator;     //代理身份驗證
    final Authenticator authenticator;      // 本地身份驗證
    final ConnectionPool connectionPool;    //連線池,複用連線
    final Dns dns;  //域名
    final boolean followSslRedirects;  //安全套接層重定向
    final boolean followRedirects;  //本地重定向
    final boolean retryOnConnectionFailure; //重試連線失敗
    final int connectTimeout;    //連線超時
    final int readTimeout; //read 超時
    final int writeTimeout; //write 超時

OkHttpClient完成整個請求設計到很多引數,都可以通過OkHttpClient.builder使用建立者模式構建。事實上,你能夠通過它來設定改變一些引數,因為他是通過建造者模式實現的,因此你可以通過builder()來設定。如果不進行設定,在Builder中就會使用預設的設定:

 public Builder() {
      dispatcher = new Dispatcher();
      protocols = DEFAULT_PROTOCOLS;
      connectionSpecs = DEFAULT_CONNECTION_SPECS;
      eventListenerFactory = EventListener.factory(EventListener.NONE);
      proxySelector = ProxySelector.getDefault();
      cookieJar = CookieJar.NO_COOKIES;
      socketFactory = SocketFactory.getDefault();
      hostnameVerifier = OkHostnameVerifier.INSTANCE;
      certificatePinner = CertificatePinner.DEFAULT;
      proxyAuthenticator = Authenticator.NONE;
      authenticator = Authenticator.NONE;
      connectionPool = new ConnectionPool();
      dns = Dns.SYSTEM;
      followSslRedirects = true;
      followRedirects = true;
      retryOnConnectionFailure = true;
      connectTimeout = 10_000;
      readTimeout = 10_000;
      writeTimeout = 10_000;
      pingInterval = 0;
    }

2,RealCall:真正的請求執行者

2.1之前文章中的Http發起同步請求的程式碼:

 Request request = new Request.Builder()
      .url(url)
      .build();
  Response response = client.newCall(request).execute();

client.newCall(request).execute()建立了Call執行了網路請求獲得response響應。重點看一看這個執行的請求者的內部是什麼鬼。

/**
   * Prepares the {@code request} to be executed at some point in the future.
   */
//OkHttpClient中的方法,可以看出RealCall的真面目
  @Override public Call newCall(Request request) {
    return RealCall.newRealCall(this, request, false /* for web socket */);
  }

RealCall的建構函式:

 private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
    //client請求
    this.client = client;
    //我們構造的請求
    this.originalRequest = originalRequest;
    this.forWebSocket = forWebSocket;
    //負責重試和重定向攔截器
    this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
  }

Call物件其實是一個介面,Call的原始碼:


public interface Call extends Cloneable {
  /** Returns the original request that initiated this call. */
  //用於返回Call物件中的request物件
  Request request();
  //用於執行同步請求的方法
  Response execute() throws IOException;
 //用於執行非同步請求的方法,通過responseCallback回撥結果
  void enqueue(Callback responseCallback);

  /** Cancels the request, if possible. Requests that are already complete cannot be canceled. */
  //取消這個call,當call被取消時請求不在執行,丟擲異常。可以用於終止請求
  void cancel();

  /**
   * Returns true if this call has been either {@linkplain #execute() executed} or {@linkplain
   * #enqueue(Callback) enqueued}. It is an error to execute a call more than once.
   */
 //是否被執行
  boolean isExecuted();
 //是否被取消
  boolean isCanceled();

  /**
   * Create a new, identical call to this one which can be enqueued or executed even if this call
   * has already been.
   */
  Call clone();

  interface Factory {
    Call newCall(Request request);
  }
}

Realcall是Call的實現類。顯然重要的執行任務就交個RealCall物件execute()和enqueue(Callback responseCallback)方法了。
我們首先看 RealCall#execute

 @Override public Response execute() throws IOException {
    //(1)
    synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
      executed = true;
    }
    captureCallStackTrace();
    //事件監聽器調
    eventListener.callStart(this);
    try {
      //(2)
      client.dispatcher().executed(this);
      //(3)
      Response result = getResponseWithInterceptorChain();
      if (result == null) throw new IOException("Canceled");
      return result;
    } catch (IOException e) {
      eventListener.callFailed(this, e);
      throw e;
    } finally {
      //(4)
      client.dispatcher().finished(this);
    }
  }

(1)檢查這個 call 是否已經被執行了,每個 call 只能被執行一次,如果想要一個完全一樣的 call,可以利用 call#clone 方法進行克隆。
(2)利用 client.dispatcher().executed(this) 來進行實際執行,分發器負責分發。dispatcher 是剛才看到的 OkHttpClient.Builder 的成員之一,它的文件說自己是非同步 HTTP 請求的執行策略,現在看來,同步請求它也有摻和。
(3)呼叫 getResponseWithInterceptorChain() 函式獲取 HTTP 返回結果,從函式名可以看出,這一步還會進行一系列“攔截”操作。
(4)最後還要通知 dispatcher 自己已經執行完畢

dispatcher 這裡我們不過度關注,在同步執行的流程中,涉及到 dispatcher 的內容只不過是告知它我們的執行狀態,比如開始執行了(呼叫 executed),比如執行完畢了(呼叫 finished)在非同步執行流程中它會有更多的參與。

Dispatcher的原始碼主要在非同步請求時參與多,這裡有執行非同步請求的執行緒池

/**
 * Policy on when async requests are executed.
 *
 * <p>Each dispatcher uses an {@link ExecutorService} to run calls internally. If you supply your
 * own executor, it should be able to run {@linkplain #getMaxRequests the configured maximum} number
 * of calls concurrently.
 */
//請求分發器,**主要在非同步請求時參與多,這裡有執行非同步請求的執行緒池**
public final class Dispatcher {
  //最大的請求數量
  private int maxRequests = 64;
  //每個主機的請求數量,預設在摸個主機上同時請求5個
  private int maxRequestsPerHost = 5;
  private @Nullable Runnable idleCallback;

  /** Executes calls. Created lazily. */
 //執行非同步call時的執行緒池,就在這兒
  private @Nullable ExecutorService executorService;

  /** Ready async calls in the order they'll be run. */
 //即將被執行的非同步call佇列
  private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();

  /** Running asynchronous calls. Includes canceled calls that haven't finished yet. */
 //正在執行的非同步call,包括被取消的還沒有完成的
  private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();

  /** Running synchronous calls. Includes canceled calls that haven't finished yet. */
 //正在執行的同步call。包括被取消的還沒有完成的
  private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();
 //可以執行自定義執行緒池,傳進來
  public Dispatcher(ExecutorService executorService) {
    this.executorService = executorService;
  }

  public Dispatcher() {
  }
 //構造執行緒池
  public synchronized ExecutorService executorService() {
    if (executorService == null) {
      executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
          new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
    }
    return executorService;
  }

  /**
   * Set the maximum number of requests to execute concurrently. Above this requests queue in
   * memory, waiting for the running calls to complete.
   *
   * <p>If more than {@code maxRequests} requests are in flight when this is invoked, those requests
   * will remain in flight.
   */
  public synchronized void setMaxRequests(int maxRequests) {
    if (maxRequests < 1) {
      throw new IllegalArgumentException("max < 1: " + maxRequests);
    }
    this.maxRequests = maxRequests;
    promoteCalls();
  }

  public synchronized int getMaxRequests() {
    return maxRequests;
  }

  /**
   * Set the maximum number of requests for each host to execute concurrently. This limits requests
   * by the URL's host name. Note that concurrent requests to a single IP address may still exceed
   * this limit: multiple hostnames may share an IP address or be routed through the same HTTP
   * proxy.
   *
   * <p>If more than {@code maxRequestsPerHost} requests are in flight when this is invoked, those
   * requests will remain in flight.
   */
  public synchronized void setMaxRequestsPerHost(int maxRequestsPerHost) {
    if (maxRequestsPerHost < 1) {
      throw new IllegalArgumentException("max < 1: " + maxRequestsPerHost);
    }
    this.maxRequestsPerHost = maxRequestsPerHost;
    promoteCalls();
  }

  public synchronized int getMaxRequestsPerHost() {
    return maxRequestsPerHost;
  }

  /**
   * Set a callback to be invoked each time the dispatcher becomes idle (when the number of running
   * calls returns to zero).
   *
   * <p>Note: The time at which a {@linkplain Call call} is considered idle is different depending
   * on whether it was run {@linkplain Call#enqueue(Callback) asynchronously} or
   * {@linkplain Call#execute() synchronously}. Asynchronous calls become idle after the
   * {@link Callback#onResponse onResponse} or {@link Callback#onFailure onFailure} callback has
   * returned. Synchronous calls become idle once {@link Call#execute() execute()} returns. This
   * means that if you are doing synchronous calls the network layer will not truly be idle until
   * every returned {@link Response} has been closed.
   */
  public synchronized void setIdleCallback(@Nullable Runnable idleCallback) {
    this.idleCallback = idleCallback;
  }
  //分發非同步執行的call,是提交到執行緒池
  synchronized void enqueue(AsyncCall call) {
    if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
      runningAsyncCalls.add(call);
     //提交到執行緒此執行
      executorService().execute(call);
    } else {
      readyAsyncCalls.add(call);
    }
  }

  /**
   * Cancel all calls currently enqueued or executing. Includes calls executed both {@linkplain
   * Call#execute() synchronously} and {@linkplain Call#enqueue asynchronously}.
   */
  public synchronized void cancelAll() {
    for (AsyncCall call : readyAsyncCalls) {
      call.get().cancel();
    }

    for (AsyncCall call : runningAsyncCalls) {
      call.get().cancel();
    }

    for (RealCall call : runningSyncCalls) {
      call.cancel();
    }
  }

  private void promoteCalls() {
    if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
    if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.

    for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
      AsyncCall call = i.next();

      if (runningCallsForHost(call) < maxRequestsPerHost) {
        i.remove();
        runningAsyncCalls.add(call);
        executorService().execute(call);
      }

      if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
    }
  }

  /** Returns the number of running calls that share a host with {@code call}. */
  private int runningCallsForHost(AsyncCall call) {
    int result = 0;
    for (AsyncCall c : runningAsyncCalls) {
      if (c.host().equals(call.host())) result++;
    }
    return result;
  }

  /** Used by {@code Call#execute} to signal it is in-flight. */
 //分發同步call,只加入到正在運行同步call的佇列
  synchronized void executed(RealCall call) {
    runningSyncCalls.add(call);
  }

  /** Used by {@code AsyncCall#run} to signal completion. */

  void finished(AsyncCall call) {
    finished(runningAsyncCalls, call, true);
  }

  /** Used by {@code Call#execute} to signal completion. */
  //同步call已經完成,移除佇列
  void finished(RealCall call) {
    finished(runningSyncCalls, call, false);
  }

  private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
    int runningCallsCount;
    Runnable idleCallback;
    synchronized (this) {
      if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
      if (promoteCalls) promoteCalls();
      runningCallsCount = runningCallsCount();
      idleCallback = this.idleCallback;
    }

    if (runningCallsCount == 0 && idleCallback != null) {
      idleCallback.run();
    }
  }

  /** Returns a snapshot of the calls currently awaiting execution. */
 //返回等待執行call的集合
  public synchronized List<Call> queuedCalls() {
    List<Call> result = new ArrayList<>();
    for (AsyncCall asyncCall : readyAsyncCalls) {
      result.add(asyncCall.get());
    }
    return Collections.unmodifiableList(result);
  }

  /** Returns a snapshot of the calls currently being executed. */
  public synchronized List<Call> runningCalls() {
    List<Call> result = new ArrayList<>();
    result.addAll(runningSyncCalls);
    for (AsyncCall asyncCall : runningAsyncCalls) {
      result.add(asyncCall.get());
    }
    return Collections.unmodifiableList(result);
  }

  public synchronized int queuedCallsCount() {
    return readyAsyncCalls.size();
  }

  public synchronized int runningCallsCount() {
    return runningAsyncCalls.size() + runningSyncCalls.size();
  }
}

在上面的同步call中,真正發出網路請求,解析返回結果的,還是getResponseWithInterceptorChain

//重要的攔截器的責任鏈
 Response getResponseWithInterceptorChain() throws IOException {
    // Build a full stack of interceptors.
    List<Interceptor> interceptors = new ArrayList<>();
    interceptors.addAll(client.interceptors());                                //(1)
    interceptors.add(retryAndFollowUpInterceptor);                             //(2)
    interceptors.add(new BridgeInterceptor(client.cookieJar()));               //(3)
    interceptors.add(new CacheInterceptor(client.internalCache()));            //(4)
    interceptors.add(new ConnectInterceptor(client));                          //(5)
    if (!forWebSocket) {
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));

    Interceptor.Chain chain = new RealInterceptorChain(interceptors, null, null, null, 0,
        originalRequest, this, eventListener, client.connectTimeoutMillis(),
        client.readTimeoutMillis(), client.writeTimeoutMillis());

    return chain.proceed(originalRequest);
  }

3,在獲得相應之前經過的最後一關就是攔截器Interceptor

the whole thing is just a stack of built-in interceptors.

可見 Interceptor 是 OkHttp 最核心的一個東西,不要誤以為它只負責攔截請求進行一些額外的處理(例如 cookie),實際上它把實際的網路請求、快取、透明壓縮等功能都統一了起來,每一個功能都只是一個 Interceptor,它們再連線成一個 Interceptor.Chain,環環相扣,最終圓滿完成一次網路請求。

getResponseWithInterceptorChain 函式我們可以看到,Interceptor.Chain 的分佈依次是:

image.png

 

(1)在配置 OkHttpClient時設定的interceptors
(2)負責失敗重試以及重定向的 RetryAndFollowUpInterceptor
(3)負責把使用者構造的請求轉換為傳送到伺服器的請求、把伺服器返回的響應轉換為使用者友好的響應的BridgeInterceptor
(4)負責讀取快取直接返回、更新快取的 CacheInterceptor
(5)負責和伺服器建立連線的ConnectInterceptor
(6)配置 OkHttpClient 時設定的 networkInterceptors;
(7)負責向伺服器傳送請求資料、從伺服器讀取響應資料CallServerInterceptor

在這裡,位置決定了功能,最後一個 Interceptor 一定是負責和伺服器實際通訊的重定向、快取等一定是在實際通訊之前的

2.2 在2.1中我們深入討論了同步請求的過程,下面講講非同步請求原理

程式碼:

Request request = new Request.Builder()
        .url("http://publicobject.com/helloworld.txt")
        .build();
    //用request新建的call使用enqueue非同步請求
    client.newCall(request).enqueue(new Callback() {
      @Override 
      public void onFailure(Call call, IOException e) {
        e.printStackTrace();
      }

      @Override 
      public void onResponse(Call call, Response response) throws IOException {
        //相應成功回撥,response,非主執行緒
        if (!response.isSuccessful()) throw new IOException("Unexpected code " + response);

        Headers responseHeaders = response.headers();
        for (int i = 0, size = responseHeaders.size(); i < size; i++) {
          System.out.println(responseHeaders.name(i) + ": " + responseHeaders.value(i));
        }

        System.out.println(response.body().string());
      }
    });

由程式碼中client.newCall(request).enqueue(Callback),開始我們知道client.newCall(request)方法返回的是RealCall物件,接下來繼續向下看enqueue()方法:

//非同步任務使用
    @Override 
    public void enqueue(Callback responseCallback) {
        synchronized (this) {
            if (executed) throw new IllegalStateException("Already Executed");
            executed = true;
        }
        //送給分發器Dispatcher分發,其實Dispatcher中有執行緒池,把AsyncCall這個任務提交到執行緒池執行,通過responseCallback回撥
        client.dispatcher().enqueue(new AsyncCall(responseCallback));
    }

我們先看一下上面的Dispatcher類中的enqueue(Call )方法,在看看AsyncCall類:

synchronized void enqueue(AsyncCall call) {
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
            runningAsyncCalls.add(call);
            executorService().execute(call);
        } else {
            readyAsyncCalls.add(call);
        }
    }

如果中的runningAsynCalls不滿,且call佔用的host小於最大數量,則將call加入到runningAsyncCalls中執行,同時利用執行緒池執行call;否者將call加入到readyAsyncCalls中。runningAsyncCalls和readyAsyncCalls是什麼呢?在把上面將同步Http請求時講過了,可以瞄一眼。

call加入到執行緒池中執行了。現在再看AsynCall的程式碼,它是RealCall中的內部類

//非同步請求,顯然是繼承了NamedRunnable ,在NamedRunnable 的run方法中執行繼承的execute() 方法
    final class AsyncCall extends NamedRunnable {
        private final Callback responseCallback;

        private AsyncCall(Callback responseCallback) {
            super("OkHttp %s", redactedUrl());
            this.responseCallback = responseCallback;
        }

        String host() {
            return originalRequest.url().host();
        }

        Request request() {
            return originalRequest;
        }

        RealCall get() {
            return RealCall.this;
        }

        @Override protected void execute() {
            boolean signalledCallback = false;
            try {
                 //還是回到這個攔截器責任鏈函式得到響應,只不過當前這個過程是線上程池中進行的
                Response response = getResponseWithInterceptorChain();
                if (retryAndFollowUpInterceptor.isCanceled()) {
                    signalledCallback = true;
                    //回撥異常
                    responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
                } else {
                    signalledCallback = true;
                     //回撥成功
                    responseCallback.onResponse(RealCall.this, response);
                }
            } catch (IOException e) {
                if (signalledCallback) {
                    // Do not signal the callback twice!
                    Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
                } else {
                   //回撥失敗
                    responseCallback.onFailure(RealCall.this, e);
                }
            } finally {
                //告訴分發器Dispatcher請求執行完成
                client.dispatcher().finished(this);
            }
        }
    }

AysncCall中的execute()中的方法,同樣是通過Response response = getResponseWithInterceptorChain();來獲得response,這樣非同步任務也同樣通過了interceptor,剩下的就想看看上面的幾個攔截器是什麼鬼。

責任鏈攔截器Interceptor

RetryAndFollowUpInterceptor:負責失敗重試以及重定向
BridgeInterceptor:負責把使用者構造的請求轉換為傳送到伺服器的請求、把伺服器返回的響應轉換為使用者友好的響應的 。
ConnectInterceptor:建立連線
NetworkInterceptors:配置OkHttpClient時設定的 NetworkInterceptors
CallServerInterceptor:傳送和接收資料



作者:木有粗麵_9602
連結:https://www.jianshu.com/p/9f2c982cd500
來源:簡書
簡書著作權歸作者所有,任何形式的轉載都請聯絡作者獲得授權並註明出處。