1. 程式人生 > >譜聚類演算法入門教程(三)—— 求f^TLf的最小值

譜聚類演算法入門教程(三)—— 求f^TLf的最小值

在上一篇部落格中,我們知道目標函式變為 argminfR6fTLfarg \min \limits_{f \in \R^6} f^TLf,即找到一個ff,使得 fTLff^TLf 取得最小值

這篇部落格將通過求導的方式取得目標函式的最小值。

1. 求fTLff^TLf的導數

目標函式的未知量為ff,那麼 fTLff^TLf 的導數可以表示為ffTLf\displaystyle \frac{\partial}{\partial f} f^TLf

這裡為了方便證明,使用一個二維向量作為例子,推廣到更高維空間也是一樣的,即假設 fT=[f1f2]f^T = [f_1 \space \space f_2]

L=[a11a12a21a22]L = \left[\begin{matrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{matrix}\right]

故:

ffTLf=f[f1f2][a11a12a21a22][f1f2]=f[f1f2][a11f1+a12f2a21f1+a22f2]=fa11f12+a12f1f2+a21f1f2+a22f22=[f1a11f12+a12f1f2+a21f1f2+a22f22f2a11f12+a

12f1f2+a21f1f2+a22f22]=[2a11f1+a12f2+a21f2a12f1+a21f1+2a22f2]=[[a11a12a21a22]+[a11a21a12a22]][f1f2]=(L+LT)f\begin{aligned}\displaystyle \frac{\partial}{\partial f} f^TLf &= \displaystyle \frac{\partial}{\partial f} \left[ \begin{matrix} f_1 & f_2 \end{matrix}\right] \left[\begin{matrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{matrix}\right] \left[\begin{matrix}f_{1}\\ f_{2}\end{matrix}\right] \\ & = \displaystyle \frac{\partial}{\partial f} \left[ \begin{matrix} f_1 & f_2 \end{matrix}\right] \left[\begin{matrix}a_{11}f_1 + a_{12}f_2 \\ a_{21}f_1 + a_{22}f_2 \end{matrix}\right] \\ & = \displaystyle \frac{\partial}{\partial f} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2 \\ & = \displaystyle \left[ \begin{matrix}\displaystyle \frac{\partial}{\partial f_1} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2 \\ \displaystyle \frac{\partial}{\partial f_2} a_{11}f_1^2 + a_{12}f_1f_2 + a_{21}f_1f_2 + a_{22}f_2^2\end{matrix} \right] \\ & = \left[ \begin{matrix}2a_{11}f_1 + a_{12}f_2 + a_{21}f_2 \\ a_{12}f_1 + a_{21}f_1 + 2a_{22}f_2 \end{matrix} \right] \\ & = \displaystyle \left[ \left[ \begin{matrix}a_{11} & a_{12} \\ a_{21} & a{22}\end{matrix}\right] + \left[ \begin{matrix}a_{11} & a_{21} \\ a_{12} & a{22}\end{matrix}\right]\right]\left[ \begin{matrix}f_{1} \\ f_{2} \end{matrix}\right] \\ & = \displaystyle (L+L^T)f \end{aligned}