1. 程式人生 > >TensorFlow HOWTO 5.1 迴圈神經網路(時間序列)

TensorFlow HOWTO 5.1 迴圈神經網路(時間序列)

5.1 迴圈神經網路(時間序列)

迴圈神經網路(RNN)用於建模帶有時間關係的資料。它的架構是這樣的。

在最基本的 RNN 中,單元(方框)中的操作和全連線層沒什麼區別,都是線性變換和啟用。它完全可以看做多個全連線層的橫向擴充套件。

但是運算元量多了之後,就會有梯度消失和爆炸的問題,於是人們改良了 RNN 單元,添加了精巧的結構來避免這樣問題。這是 RNN 的幾種改良結構:

操作步驟

匯入所需的包。

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib as
mpl import matplotlib.pyplot as plt

匯入資料,並進行預處理。我們使用國際航班乘客資料集,由於它不存在於任何現有庫中,我們需要先下載它。

ts = pd.read_csv('international-airline-passengers.csv', usecols=[1], header=0).dropna().values.ravel()

之後,我們需要將其轉換為 RNN 單元可以接受的格式。可接受的格式是三維的,維度分別表示樣本、時間和特徵。我們需要一個視窗大小,表示幾個歷史值與當前值有關,然後我們按照它來切分時間序列,就能得到樣本。

我僅僅使用原始特徵,也就是乘客數量。我並不是表明 RNN 預測得有多好,只是告訴大家 RNN 怎麼用。以後有了更好的特徵再補充。

wnd_sz = 5
ds = []
for i in range(0, len(ts) - wnd_sz + 1):
    ds.append(ts[i:i + wnd_sz])
ds = np.asarray(ds)

x_ = ds[:, 0:wnd_sz - 1]
y_ = ds[:, [wnd_sz - 1]]
x_ = np.expand_dims(x_, 2)

之後是訓練集和測試集的劃分。同樣要注意絕對不能打亂。

train_size = int(len(x_) * 0.7)
x_train = x_[:train_size]
y_train = y_[:train_size]
x_test = x_[train_size:] y_test = y_[train_size:]

由於 RNN 單元裡面使用了tanh啟用函式,它對於資料的尺度非常敏感,我們需要將資料標準化。但是,如果我們遵循傳統方法,就發現效果不是很好,RNN 甚至不能預測趨勢。觀察資料集就會發現,後面的資料明顯大於前面的資料。如果我們使用訓練集的均值和標準差來標準化,仍舊是如此。換句話說,對於訓練集來說,測試集是“新的分佈”。所以我們分別計算訓練集和測試集的均值和標準差,並使用它們自己的均值和標準差,將訓練集和測試集標準化。

x_mu_train = x_train.mean(0)
x_sigma_train = x_train.std(0)
y_mu_train = y_train.mean(0)
y_sigma_train = y_train.std(0)
x_train = (x_train - x_mu_train) / x_sigma_train
y_train = (y_train - y_mu_train) / y_sigma_train
x_mu_test = x_test.mean(0)
x_sigma_test = x_test.std(0)
y_mu_test = y_test.mean(0)
y_sigma_test = y_test.std(0)
x_test = (x_test - x_mu_test) / x_sigma_test
y_test = (y_test - y_mu_test) / y_sigma_test

定義超引數。

變數 含義
n_step 時間步長
n_input 樣本特徵數
n_epoch 迭代數
n_hidden 迴圈層的單元數
n_output 輸出層單元數
lr 學習率
n_step = wnd_sz - 1
n_input = 1
n_hidden = 4
n_output = 1
n_epoch = 10000
lr = 0.1

搭建模型。迴圈層之後添加了一個輸出層,目的是把迴圈層輸出的四個特徵壓縮為一個特徵,與標籤匹配。

變數 含義
x 輸入
y 真實標籤
cell 迴圈層
w_l2 輸出層的權重
b_l2 輸出層的偏置
h_l1 迴圈層的輸出
h_l2 模型的輸出
x = tf.placeholder(tf.float64, [None, n_step, n_input])
y = tf.placeholder(tf.float64, [None, n_output])
cell = tf.nn.rnn_cell.GRUCell(n_hidden)
w_l2 = tf.Variable(np.random.rand(n_hidden, n_output))
b_l2 = tf.Variable(np.random.rand(1, n_output))

h_l1, _ = tf.nn.dynamic_rnn(cell, x, dtype=tf.float64)
h_l2 = h_l1[:, -1] @ w_l2 + b_l2

定義 MSE 損失、優化操作、和 R 方度量指標。

變數 含義
loss 損失
op 優化操作
r_sqr R 方
loss = tf.reduce_mean((h_l2 - y) ** 2)
op = tf.train.AdamOptimizer(lr).minimize(loss)

y_mean = tf.reduce_mean(y)
r_sqr = 1 - tf.reduce_sum((y - h_l2) ** 2) / tf.reduce_sum((y - y_mean) ** 2)

使用訓練集訓練模型。

losses = []
r_sqrs = []

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)

使用測試集計算 R 方。

        r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})
        r_sqrs.append(r_sqr_)

每一百步列印損失和度量值。

        if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')

得到模型對訓練特徵和測試特徵的預測值。

    y_train_pred = sess.run(h_l2, feed_dict={x: x_train})
    y_test_pred = sess.run(h_l2, feed_dict={x: x_test})
    y_train_pred = y_train_pred * y_sigma_train + y_mu_train
    y_test_pred = y_test_pred * y_sigma_test + y_mu_test

輸出:

epoch: 0, loss: 1.172066950288726, r_sqr: 0.08181895235767012
epoch: 100, loss: 0.06762743481295605, r_sqr: 0.74114029701611
epoch: 200, loss: 0.04335752219908887, r_sqr: 0.6723681622904742
epoch: 300, loss: 0.030765678607308333, r_sqr: 0.6122519542608709
epoch: 400, loss: 0.0255667258649117, r_sqr: 0.5849438991657725
epoch: 500, loss: 0.027757059089794138, r_sqr: 0.5547220968537527
epoch: 600, loss: 0.02280867896340781, r_sqr: 0.5770103850696798
epoch: 700, loss: 0.021203888157209534, r_sqr: 0.5588744061563752
epoch: 800, loss: 0.020631124908383643, r_sqr: 0.5340900532988054
epoch: 900, loss: 0.01848138445620317, r_sqr: 0.4793500483558242
epoch: 1000, loss: 0.01750574268333934, r_sqr: 0.4363987472239601
epoch: 1100, loss: 0.019063501795946507, r_sqr: 0.39722141072773787
epoch: 1200, loss: 0.0162686638744368, r_sqr: 0.3656020052876743
epoch: 1300, loss: 0.01700178459519973, r_sqr: 0.34215312925023267
epoch: 1400, loss: 0.01680496271967236, r_sqr: 0.32958240891225643
epoch: 1500, loss: 0.022387361152892183, r_sqr: 0.311875062539985
epoch: 1600, loss: 0.01692835079726568, r_sqr: 0.31973211945726576
epoch: 1700, loss: 0.014981184565736732, r_sqr: 0.34878737027421214
epoch: 1800, loss: 0.015259222044438638, r_sqr: 0.34762914874016715
epoch: 1900, loss: 0.013233242381529384, r_sqr: 0.33428957917112656
epoch: 2000, loss: 0.013406887787008756, r_sqr: 0.33925822033716413
epoch: 2100, loss: 0.014663732662643054, r_sqr: 0.347748811545596
epoch: 2200, loss: 0.013725021637547831, r_sqr: 0.3537942857251979
epoch: 2300, loss: 0.012930256601236268, r_sqr: 0.34525246614475136
epoch: 2400, loss: 0.013634394369979042, r_sqr: 0.31935143022735935
epoch: 2500, loss: 0.012295407249325577, r_sqr: 0.32843801172553166
epoch: 2600, loss: 0.012086876034542369, r_sqr: 0.2944659162449187
epoch: 2700, loss: 0.011431132027934963, r_sqr: 0.3320304352651986
epoch: 2800, loss: 0.026766484877065972, r_sqr: 0.3516603080525481
epoch: 2900, loss: 0.013249484588141427, r_sqr: 0.32412481149383066
epoch: 3000, loss: 0.01105305279694339, r_sqr: 0.3292310540476926
epoch: 3100, loss: 0.011470806104939772, r_sqr: 0.3297084772513311
epoch: 3200, loss: 0.011529391738337445, r_sqr: 0.32604568271503975
epoch: 3300, loss: 0.016529603402840765, r_sqr: 0.3043582054899223
epoch: 3400, loss: 0.013990350362048133, r_sqr: 0.3199655109188301
epoch: 3500, loss: 0.01153881610786597, r_sqr: 0.3133999574164319
epoch: 3600, loss: 0.012797147535482193, r_sqr: 0.31258610293795597
epoch: 3700, loss: 0.011476855518680756, r_sqr: 0.34671798591970837
epoch: 3800, loss: 0.010467519750448642, r_sqr: 0.3104500031552391
epoch: 3900, loss: 0.010726962231936567, r_sqr: 0.3138785388392976
epoch: 4000, loss: 0.011354515890079096, r_sqr: 0.3439112763768726
epoch: 4100, loss: 0.010956935944379312, r_sqr: 0.33047301867737333
epoch: 4200, loss: 0.010516217542845503, r_sqr: 0.3169866902021138
epoch: 4300, loss: 0.017644784078390447, r_sqr: 0.30790429205962355
epoch: 4400, loss: 0.010311798410482015, r_sqr: 0.33750001847417244
epoch: 4500, loss: 0.012096887824821146, r_sqr: 0.3483536401639381
epoch: 4600, loss: 0.010336452329588753, r_sqr: 0.333357260461554
epoch: 4700, loss: 0.010768585264597813, r_sqr: 0.3286332805909209
epoch: 4800, loss: 0.010187296826748472, r_sqr: 0.3508737658734946
epoch: 4900, loss: 0.012830964380652418, r_sqr: 0.38883425472040245
epoch: 5000, loss: 0.010034723893693883, r_sqr: 0.34865494006975606
epoch: 5100, loss: 0.018500185229121037, r_sqr: 0.37866142043477613
epoch: 5200, loss: 0.010063261243586386, r_sqr: 0.34191028337439755
epoch: 5300, loss: 0.011189870387229503, r_sqr: 0.34997022979225245
epoch: 5400, loss: 0.011487597291485683, r_sqr: 0.31996396612360156
epoch: 5500, loss: 0.018130474919110774, r_sqr: 0.40163834751360294
epoch: 5600, loss: 0.010631864046823009, r_sqr: 0.31888613030550417
epoch: 5700, loss: 0.010235333409754856, r_sqr: 0.33371577618904724
epoch: 5800, loss: 0.017054583875343695, r_sqr: 0.4573069550292207
epoch: 5900, loss: 0.010375495082076958, r_sqr: 0.34263745746177443
epoch: 6000, loss: 0.02899888987961715, r_sqr: 0.4731489130962029
epoch: 6100, loss: 0.009635932593390793, r_sqr: 0.3377314247566131
epoch: 6200, loss: 0.009756606958491803, r_sqr: 0.3433460486517317
epoch: 6300, loss: 0.015849799410205617, r_sqr: 0.38774652539473653
epoch: 6400, loss: 0.00952936061724416, r_sqr: 0.3316576525214012
epoch: 6500, loss: 0.01726899798192304, r_sqr: 0.3273077681611758
epoch: 6600, loss: 0.009523356787685604, r_sqr: 0.3307726070509249
epoch: 6700, loss: 0.012766831260869482, r_sqr: 0.3307548009627649
epoch: 6800, loss: 0.009289520442372325, r_sqr: 0.32373411787154416
epoch: 6900, loss: 0.011158193836457308, r_sqr: 0.32997251352858914
epoch: 7000, loss: 0.02869441623350593, r_sqr: 0.3338995201916093
epoch: 7100, loss: 0.018485258063551675, r_sqr: 0.2938792287466744
epoch: 7200, loss: 0.008861181401821593, r_sqr: 0.32004037549190045
epoch: 7300, loss: 0.00867730190276807, r_sqr: 0.31307907559266057
epoch: 7400, loss: 0.010568595192759116, r_sqr: 0.3007627324642683
epoch: 7500, loss: 0.008931675261205094, r_sqr: 0.3355236299841886
epoch: 7600, loss: 0.01437912261193081, r_sqr: 0.3118478993546139
epoch: 7700, loss: 0.013553350799683056, r_sqr: 0.3492071104037119
epoch: 7800, loss: 0.030876872968019105, r_sqr: 0.31738784411969434
epoch: 7900, loss: 0.010089701030161817, r_sqr: 0.3301184791799566
epoch: 8000, loss: 0.01147013359703656, r_sqr: 0.30306917655113186
epoch: 8100, loss: 0.009855414853123119, r_sqr: 0.34582101555677947
epoch: 8200, loss: 0.014423066317111677, r_sqr: 0.3470667522167451
epoch: 8300, loss: 0.011664752107448714, r_sqr: 0.32157739869359203
epoch: 8400, loss: 0.009646714124369984, r_sqr: 0.3355179490543708
epoch: 8500, loss: 0.008793324000994002, r_sqr: 0.2839973244304941
epoch: 8600, loss: 0.009740176108560508, r_sqr: 0.324717537310496
epoch: 8700, loss: 0.008509925688666948, r_sqr: 0.29162404590044055
epoch: 8800, loss: 0.00935785011763191, r_sqr: 0.2925641966682784
epoch: 8900, loss: 0.010778117882046828, r_sqr: 0.2969009246659946
epoch: 9000, loss: 0.008386197722733947, r_sqr: 0.31203296266480274
epoch: 9100, loss: 0.01152050463672165, r_sqr: 0.32619935954711543
epoch: 9200, loss: 0.008279818958514217, r_sqr: 0.3172741922458261
epoch: 9300, loss: 0.00767664017767626, r_sqr: 0.33894394589120425
epoch: 9400, loss: 0.0093665602478405, r_sqr: 0.3409878486332283
epoch: 9500, loss: 0.014677227625938132, r_sqr: 0.3553809732953209
epoch: 9600, loss: 0.008036392158721397, r_sqr: 0.33729133931823474
epoch: 9700, loss: 0.011275509041766035, r_sqr: 0.30956775357004673
epoch: 9800, loss: 0.00885348178403466, r_sqr: 0.3402377958439502
epoch: 9900, loss: 0.009747783923937898, r_sqr: 0.3843754214763523

繪製時間序列及其預測值。

plt.figure()
plt.plot(ts, label='Original')
y_train_pred = np.concatenate([
    [np.nan] * n_input, 
    y_train_pred.ravel()
])
y_test_pred = np.concatenate([
    [np.nan] * (n_input + train_size),
    y_test_pred.ravel()
])
plt.plot(y_train_pred, label='y_train_pred')
plt.plot(y_test_pred, label='y_test_pred')
plt.legend()
plt.show()

繪製訓練集上的損失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('MSE')
plt.show()

繪製測試集上的 R 方。

plt.figure()
plt.plot(r_sqrs)
plt.title('$R^2$ on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('$R^2$')
plt.show()

擴充套件閱讀