1. 程式人生 > >keras訓練淺層卷積網路並儲存和載入模型

keras訓練淺層卷積網路並儲存和載入模型

這裡我們使用keras定義簡單的神經網路全連線層訓練MNIST資料集和cifar10資料集:

keras_mnist.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from keras.models import Sequential
from keras.layers.core import Dense
from keras.optimizers import SGD
from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
import argparse
# 命令列引數執行
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
args  =vars(ap.parse_args())
# 載入資料MNIST,然後歸一化到【0,1】,同時使用75%做訓練,25%做測試
print("[INFO] loading MNIST (full) dataset")
dataset = datasets.fetch_mldata("MNIST Original", data_home="/home/king/test/python/train/pyimagesearch/nn/data/")
data = dataset.data.astype("float") / 255.0
(trainX, testX, trainY, testY) = train_test_split(data, dataset.target, test_size=0.25)
# 將label進行one-hot編碼
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# keras定義網路結構784--256--128--10
model = Sequential()
model.add(Dense(256, input_shape=(784,), activation="relu"))
model.add(Dense(128, activation="relu"))
model.add(Dense(10, activation="softmax"))
# 開始訓練
print("[INFO] training network...")
# 0.01的學習率
sgd = SGD(0.01)
# 交叉驗證
model.compile(loss="categorical_crossentropy", optimizer=sgd, metrics=['accuracy'])
H = model.fit(trainX, trainY, validation_data=(testX, testY), epochs=100, batch_size=128)
# 測試模型和評估
print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=128)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=[str(x) for x in lb.classes_]))
# 儲存視覺化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 100), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 100), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 100), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 100), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"])

使用relu做啟用函式:

使用sigmoid做啟用函式:

接著我們自己定義一些modules去實現一個簡單的卷基層去訓練cifar10資料集:

imagetoarraypreprocessor.py

'''
該函式主要是實現keras的一個細節轉換,因為訓練的影象時RGB三顏色通道,讀取進來的資料是有depth的,keras為了相容一些後臺,預設是按照(height, width, depth)讀取,但有時候就要改變成(depth, height, width)
'''
from keras.preprocessing.image import img_to_array

class ImageToArrayPreprocessor:
	def __init__(self, dataFormat=None):
		self.dataFormat = dataFormat

	def preprocess(self, image):
		return img_to_array(image, data_format=self.dataFormat)

shallownet.py

'''
定義一個簡單的卷基層:
input->conv->Relu->FC
'''
from keras.models import Sequential
from keras.layers.convolutional import Conv2D
from keras.layers.core import Activation, Flatten, Dense
from keras import backend as K

class ShallowNet:
	@staticmethod
	def build(width, height, depth, classes):
		model = Sequential()
		inputShape = (height, width, depth)

		if K.image_data_format() == "channels_first":
			inputShape = (depth, height, width)

		model.add(Conv2D(32, (3, 3), padding="same", input_shape=inputShape))
		model.add(Activation("relu"))

		model.add(Flatten())
		model.add(Dense(classes))
		model.add(Activation("softmax"))

		return model

然後就是訓練程式碼:

keras_cifar10.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
args = vars(ap.parse_args())

print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0

lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# 標籤0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

print("[INFO] compiling model...")
opt = SGD(lr=0.0001)
model = ShallowNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])

print("[INFO] training network...")
H = model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=32, epochs=1000, verbose=1)

print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=labelNames))

# 儲存視覺化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 1000), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 1000), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 1000), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 1000), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"])

程式碼中可以對訓練的learning rate進行微調,大概可以接近60%的準確率。

然後修改下程式碼可以儲存訓練模型:

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import numpy as np
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True, help="path to the output loss/accuracy plot")
ap.add_argument("-m", "--model", required=True, help="path to save train model")
args = vars(ap.parse_args())

print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0

lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
# 標籤0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

print("[INFO] compiling model...")
opt = SGD(lr=0.005)
model = ShallowNet.build(width=32, height=32, depth=3, classes=10)
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])

print("[INFO] training network...")
H = model.fit(trainX, trainY, validation_data=(testX, testY), batch_size=32, epochs=50, verbose=1)

model.save(args["model"])

print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32)
print(classification_report(testY.argmax(axis=1), predictions.argmax(axis=1), 
	target_names=labelNames))

# 儲存視覺化訓練結果
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, 5), H.history["loss"], label="train_loss")
plt.plot(np.arange(0, 5), H.history["val_loss"], label="val_loss")
plt.plot(np.arange(0, 5), H.history["acc"], label="train_acc")
plt.plot(np.arange(0, 5), H.history["val_acc"], label="val_acc")
plt.title("Training Loss and Accuracy")
plt.xlabel("# Epoch")
plt.ylabel("Loss/Accuracy")
plt.legend()
plt.savefig(args["output"])

命令列執行:

我們使用另一個程式來載入上一次訓練儲存的模型,然後進行測試:

test.py

from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import classification_report
from shallownet import ShallowNet
from keras.optimizers import SGD
from keras.datasets import cifar10
from keras.models import load_model
import matplotlib.pyplot as plt
import numpy as np
import argparse

ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True, help="path to save train model")
args = vars(ap.parse_args())

# 標籤0-9代表的類別string
labelNames = ['airplane', 'automobile', 'bird', 'cat', 
	'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

print("[INFO] loading CIFAR-10 dataset")
((trainX, trainY), (testX, testY)) = cifar10.load_data()

idxs = np.random.randint(0, len(testX), size=(10,))
testX = testX[idxs]
testY = testY[idxs]

trainX = trainX.astype("float") / 255.0
testX = testX.astype("float") / 255.0

lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)

print("[INFO] loading pre-trained network...")
model = load_model(args["model"])

print("[INFO] evaluating network...")
predictions = model.predict(testX, batch_size=32).argmax(axis=1)

print("predictions\n", predictions)

for i in range(len(testY)):
	print("label:{}".format(labelNames[predictions[i]]))

trueLabel = []
for i in range(len(testY)):
	for j in range(len(testY[i])):
		if testY[i][j] != 0:
			trueLabel.append(j)

print(trueLabel)

print("ground truth testY:")
for i in range(len(trueLabel)):
	print("label:{}".format(labelNames[trueLabel[i]]))

print("TestY\n", testY)

ok