1. 程式人生 > >char *name 與 char name[]的區別(基礎知識)

char *name 與 char name[]的區別(基礎知識)

學習過程中發現了一個以前一直預設的錯誤,同樣char *c = "abc"和char c[]="abc",前者改變其內容程式是會崩潰的,而後者完全正確。
程式演示:
測試環境Devc++
程式碼 #include <stdio.h>
#include <string.h>
main()
{
   char *c1 = "abc";
   char c2[] = "abc";
   char *c3 = ( char* )malloc(3);
    c3 = "abc";
    printf("%d %d %s ",&c1,c1,c1);
    printf("%d %d %s ",&c2,c2,c2);
    printf("%d %d %s ",&c3,c3,c3);
    getchar();
}   

執行結果
2293628 4199056 abc
2293624 2293624 abc
2293620 4199056 abc

參考資料:
首先要搞清楚編譯程式佔用的記憶體的分割槽形式:
一、預備知識—程式的記憶體分配
一個由c/C++編譯的程式佔用的記憶體分為以下幾個部分
1、棧區(stack)—由編譯器自動分配釋放,存放函式的引數值,區域性變數的值等。其操作方式類似於資料結構中的棧。
2、堆區(heap)—一般由程式設計師分配釋放,若程式設計師不釋放,程式結束時可能由OS回收。注意它與資料結構中的堆是兩回事,分配方式倒是類似於連結串列,呵呵。
3、全域性區(靜態區)(static)—全域性變數和靜態變數的儲存是放在一塊的,初始化的全域性變數和靜態變數在一塊區域,未初始化的全域性變數和未初始化的靜態變數在相鄰的另一塊區域。程式結束後由系統釋放。
4、文字常量區—常量字串就是放在這裡的。程式結束後由系統釋放。
5、程式程式碼區
這是一個前輩寫的,非常詳細
//main.cpp  

#include <stdio.h>
#include <string.h>
  int a=0;    //全域性初始化區
  char *p1;   //全域性未初始化區
   main()
  {
   int b;棧
   char s[]="abc";   //
   char *p2;         //
   char *p3="123456";   //123456

二、堆和棧的理論知識
2.1申請方式
stack:
由系統自動分配。例如,宣告在函式中一個區域性變數int b;系統自動在棧中為b開闢空間
heap:
需要程式設計師自己申請,並指明大小,在c中malloc函式
如p1=(char*)malloc(10);
在C++中用new運算子
如p2=(char*)malloc(10);
但是注意p1、p2本身是在棧中的。
2.2
申請後系統的響應
棧:只要棧的剩餘空間大於所申請空間,系統將為程式提供記憶體,否則將報異常提示棧溢位。
堆:首先應該知道作業系統有一個記錄空閒記憶體地址的連結串列,當系統收到程式的申請時,會遍歷該連結串列,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點連結串列中刪除,並將該結點的空間分配給程式,另外,對於大多數系統,會在這塊記憶體空間中的首地址處記錄本次分配的大小,這樣,程式碼中的delete語句才能正確的釋放本記憶體空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒連結串列中。
2.3申請大小的限制
棧:在Windows下,棧是向低地址擴充套件的資料結構,是一塊連續的記憶體的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。
堆:堆是向高地址擴充套件的資料結構,是不連續的記憶體區域。這是由於系統是用連結串列來儲存的空閒記憶體地址的,自然是不連續的,而連結串列的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬記憶體。由此可見,堆獲得的空間比較靈活,也比較大。
2.4申請效率的比較:
棧:由系統自動分配,速度較快。但程式設計師是無法控制的。
堆:是由new分配的記憶體,一般速度比較慢,而且容易產生記憶體碎片,不過用起來最方便.
另外,在WINDOWS下,最好的方式是用Virtual Alloc分配記憶體,他不是在堆,也不是在棧,而是直接在程序的地址空間中保留一塊記憶體,雖然用起來最不方便。但是速度快,也最靈活。
2.5堆和棧中的儲存內容
棧:在函式呼叫時,第一個進棧的是主函式中後的下一條指令(函式呼叫語句的下一條可執行語句)的地址,然後是函式的各個引數,在大多數的C編譯器中,引數是由右往左入棧的,然後是函式中的區域性變數。注意靜態變數是不入棧的。當本次函式呼叫結束後,區域性變數先出棧,然後是引數,最後棧頂指標指向最開始存的地址,也就是主函式中的下一條指令,程式由該點繼續執行。
堆:一般是在堆的頭部用一個位元組存放堆的大小。堆中的具體內容由程式設計師安排。
2.6存取效率的比較
char s1[]="aaaaaaaaaaaaaaa";
char *s2="bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在執行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的陣列比指標所指向的字串(例如堆)快。
比如:
#include
voidmain()
{
char a=1;
char c[]="1234567890";
char *p="1234567890";
a = c[1];
a = p[1];
return;
}
對應的彙編程式碼
10:a=c[1];
004010678A4DF1movcl,byteptr[ebp-0Fh]
0040106A884DFCmovbyteptr[ebp-4],cl
11:a=p[1];
0040106D8B55ECmovedx,dwordptr[ebp-14h]
004010708A4201moval,byteptr[edx+1]
004010738845FCmovbyteptr[ebp-4],al
第一種在讀取時直接就把字串中的元素讀到暫存器cl中,而第二種則要先把指標值讀到edx中,在根據edx讀取字元,顯然慢了。
2.7小結:
堆和棧的區別可以用如下的比喻來看出:
使用棧就象我們去飯館裡

吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。
使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。

總結:

1. char *c1 = "abc"; 
2. char c2[] = "abcd"; 
3. char *c3 = ( char* )malloc(4); 
4. c3 = "abc" 
5. strcpy(c3,"1234"); 
6. c3[0] = 'g'; 


分析: 
1。上面程式碼中的 字串常量 "abc","abcd","1234",都是存放在所謂的文字常量區; 
2。c1,c2,c3 這個三變數,都存放在棧中 

3。在VC中測試,CPU4個位元組對齊吧,EBP為棧頂指標 

c1 的地址,就是ebp - 04h,佔用4個位元組 
c2 的地址,就是ebp - 0ch,佔用8個位元組 
c3 的地址,就是ebp - 10h,佔用4個位元組 

4。儲存內容比較 
c1 的4個位元組,儲存是的字串常量 "abc"的地址 
c2 的8個位元組,儲存就是就"abcd\0"還有3個位元組未用;它不儲存字串常量 "abcd"的地址,而是將內容複製過來 

c3和c1一樣,也是儲存一個地址,但這個地址,是在堆中, 

結論: 
所謂c中char * 和 char []的區別 

char * 在棧中是4個位元組的指標, 
而 char []將在棧中申請合適的記憶體來儲存初始化的資料, 

也就是說 
char c2[]="abcd"; 和char c2[5]="abcd";一樣的; 
若char c2[n],則在棧中分配n個位元組; 

所以c2[1]='0'是正確的,c1[1]='a'是錯誤的,因為字串常量不允許修改; 

同時也說明了上面的程式碼 
... 
char a=1; 
char c[]="1234567890"; 
char *p="1234567890"; 
a = c[1]; 
a = p[1]; 
... 

a = c[1];要比a = p[1];快的原因,少了一條指令嘛