1. 程式人生 > >基於樸素貝葉斯的新聞分類

基於樸素貝葉斯的新聞分類

貝葉斯理論
在我們有一大堆樣本(包含特徵和類別)的時候,我們非常容易通過統計得到 p(特徵|類別) .

大家又都很熟悉下述公式:
這裡寫圖片描述

#coding: utf-8
import os
import time
import random
import jieba  #處理中文
#import nltk  #處理英文
import sklearn
from sklearn.naive_bayes import MultinomialNB
import numpy as np
import pylab as pl
import matplotlib.pyplot as plt

#粗暴的詞去重
def make_word_set(words_file): words_set = set() with open(words_file, 'r') as fp: for line in fp.readlines(): word = line.strip().decode("utf-8") if len(word)>0 and word not in words_set: # 去重 words_set.add(word) return words_set # 文字處理,也就是樣本生成過程
def text_processing(folder_path, test_size=0.2): folder_list = os.listdir(folder_path) data_list = [] class_list = [] # 遍歷資料夾 for folder in folder_list: new_folder_path = os.path.join(folder_path, folder) files = os.listdir(new_folder_path) # 讀取檔案 j = 1
for file in files: if j > 100: # 怕記憶體爆掉,只取100個樣本檔案,你可以註釋掉取完 break with open(os.path.join(new_folder_path, file), 'r') as fp: raw = fp.read() ## 是的,隨處可見的jieba中文分詞 jieba.enable_parallel(4) # 開啟並行分詞模式,引數為並行程序數,不支援windows word_cut = jieba.cut(raw, cut_all=False) # 精確模式,返回的結構是一個可迭代的genertor word_list = list(word_cut) # genertor轉化為list,每個詞unicode格式 jieba.disable_parallel() # 關閉並行分詞模式 data_list.append(word_list) #訓練集list class_list.append(folder.decode('utf-8')) #類別 j += 1 ## 粗暴地劃分訓練集和測試集 data_class_list = zip(data_list, class_list) random.shuffle(data_class_list) index = int(len(data_class_list)*test_size)+1 train_list = data_class_list[index:] test_list = data_class_list[:index] train_data_list, train_class_list = zip(*train_list) test_data_list, test_class_list = zip(*test_list) #其實可以用sklearn自帶的部分做 #train_data_list, test_data_list, train_class_list, test_class_list = sklearn.cross_validation.train_test_split(data_list, class_list, test_size=test_size) # 統計詞頻放入all_words_dict all_words_dict = {} for word_list in train_data_list: for word in word_list: if all_words_dict.has_key(word): all_words_dict[word] += 1 else: all_words_dict[word] = 1 # key函式利用詞頻進行降序排序 all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f:f[1], reverse=True) # 內建函式sorted引數需為list all_words_list = list(zip(*all_words_tuple_list)[0]) return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list def words_dict(all_words_list, deleteN, stopwords_set=set()): # 選取特徵詞 feature_words = [] n = 1 for t in range(deleteN, len(all_words_list), 1): if n > 1000: # feature_words的維度1000 break if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1<len(all_words_list[t])<5: feature_words.append(all_words_list[t]) n += 1 return feature_words # 文字特徵 def text_features(train_data_list, test_data_list, feature_words, flag='nltk'): def text_features(text, feature_words): text_words = set(text) ## ----------------------------------------------------------------------------------- if flag == 'nltk': ## nltk特徵 dict features = {word:1 if word in text_words else 0 for word in feature_words} elif flag == 'sklearn': ## sklearn特徵 list features = [1 if word in text_words else 0 for word in feature_words] else: features = [] ## ----------------------------------------------------------------------------------- return features train_feature_list = [text_features(text, feature_words) for text in train_data_list] test_feature_list = [text_features(text, feature_words) for text in test_data_list] return train_feature_list, test_feature_list # 分類,同時輸出準確率等 def text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag='nltk'): ## ----------------------------------------------------------------------------------- if flag == 'nltk': ## 使用nltk分類器 train_flist = zip(train_feature_list, train_class_list) test_flist = zip(test_feature_list, test_class_list) classifier = nltk.classify.NaiveBayesClassifier.train(train_flist) test_accuracy = nltk.classify.accuracy(classifier, test_flist) elif flag == 'sklearn': ## sklearn分類器 classifier = MultinomialNB().fit(train_feature_list, train_class_list) test_accuracy = classifier.score(test_feature_list, test_class_list) else: test_accuracy = [] return test_accuracy print "start" ## 文字預處理 folder_path = './Database/SogouC/Sample' all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = text_processing(folder_path, test_size=0.2) # 生成stopwords_set stopwords_file = './stopwords_cn.txt' stopwords_set = make_word_set(stopwords_file) ## 文字特徵提取和分類 # flag = 'nltk' flag = 'sklearn' deleteNs = range(0, 1000, 20) test_accuracy_list = [] for deleteN in deleteNs: # feature_words = words_dict(all_words_list, deleteN) feature_words = words_dict(all_words_list, deleteN, stopwords_set) train_feature_list, test_feature_list = text_features(train_data_list, test_data_list, feature_words, flag) test_accuracy = text_classifier(train_feature_list, test_feature_list, train_class_list, test_class_list, flag) test_accuracy_list.append(test_accuracy) print test_accuracy_list # 結果評價 #plt.figure() plt.plot(deleteNs, test_accuracy_list) plt.title('Relationship of deleteNs and test_accuracy') plt.xlabel('deleteNs') plt.ylabel('test_accuracy') plt.show() #plt.savefig('result.png') print "finished"