1. 程式人生 > >Andrew Ng機器學習筆記ex4 神經網路學習

Andrew Ng機器學習筆記ex4 神經網路學習

nnCostFunction.m

function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the
neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into
the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2
layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % % Part 1:計算J % X=[ones(m,1) X]; % for i=1:m, % z2=Theta1*X(i,:)'; % a2=sigmoid(z2); % a2=[1;a2]; % z3=Theta2*a2; % a3=sigmoid(z3); % J=J+sum(log(1-a3))+log(a3(y(i,:)))-log(1-a3(y(i,:)));%由於輸出為10維向量,而y的值是1-10的數字,所以可以用y的值指示a3那些元素加,哪些不加 % end % J=-(J/m); % % % % Part 2: compute the gradients % temp=0; % for i=1:hidden_layer_size, % for j=2:(input_layer_size+1), % temp=temp+Theta1(i,j)^2;%對Theta1除了第一列(與偏置神經元對應的那列)元素的平方求和 % end % end % for i=1:num_labels, % for j=2:(hidden_layer_size+1), % temp=temp+Theta2(i,j)^2;%對Theta2除了第一列(與偏置神經元對應的那列)元素的平方求和 % end % end % % J=J+lambda/(2*m)*temp; % % % %利用反向傳播法求取偏導數值,實際上這個迴圈可以和計算J值得迴圈合為一個,為了程式碼清晰,所以分開寫了?? % delta3=zeros(num_labels,1);%反向傳播,輸出層的誤差?? % delta2=zeros(size(Theta1));%反向傳播,隱藏層的誤差;輸入層不計算誤差?? % for i=1:m,%m為訓練樣本數,利用for遍歷? % a1=X(i,:)'; % z2=Theta1*a1; % a2=sigmoid(z2); % a2=[1;a2]; % z3=Theta2*a2; % a3=sigmoid(z3); % delta3=a3; % delta3(y(i,:))=delta3(y(i,:))-1; % delta2=Theta2'*delta3.*[1;sigmoidGradient(z2)]; % delta2=delta2(2:end); % Theta2_grad=Theta2_grad+delta3*a2'; % Theta1_grad=Theta1_grad+delta2*a1'; % end % % Theta2_grad=Theta2_grad/m+lambda/m*Theta2;%正則化,修正梯度值 % Theta2_grad(:,1)=Theta2_grad(:,1)-lambda/m*Theta2(:,1);%由於不懲罰偏執單元對應的列,所以把他減掉 % Theta1_grad=Theta1_grad/m+lambda/m*Theta1; % Theta1_grad(:,1)=Theta1_grad(:,1)-lambda/m*Theta1(:,1); X = [ones(m, 1) X]; ylabel = zeros(num_labels, m); for i=1:m ylabel(y(i), i) = 1; end z2 = X*Theta1'; z2 = [ones(m, 1) z2]; a2 = sigmoid(X*Theta1'); a2 = [ones(m, 1) a2]; a3 = sigmoid(a2*Theta2'); for i=1:m J = J - log(a3(i, :))*ylabel(:, i) - (log(1 - a3(i, :)) * (1 - ylabel(:, i))); end J = J/m; J = J + lambda/(2*m) * (sum(sum(Theta1(:, 2:end).^2)) + sum(sum(Theta2(:, 2:end).^2))); Delta1 = zeros(size(Theta1)); Delta2 = zeros(size(Theta2)); for t = 1:m delta3 = a3(t, :)' - ylabel(:, t); delta2 = Theta2'*delta3 .* sigmoidGradient(z2(t, :)'); Delta1 = Delta1 + delta2(2:end) * X(t, :); Delta2 = Delta2 + delta3 * a2(t, :); end Theta1_grad = Delta1 / m; Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end) + lambda/m*Theta1(:, 2:end); Theta2_grad = Delta2 / m; Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end) + lambda/m*Theta2(:, 2:end); % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end

隨機初始化
randInitializeWeights.m

function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the first column of W handles the "bias" terms
%

% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first column of W corresponds to the parameters for the bias unit
%
epsilon = 0.12;
W = rand(L_out, 1+L_in)*2*epsilon - epsilon;
% =========================================================================

end

sigmoid梯度
sigmoidGradient.m

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).

g=sigmoid(z).*(1-sigmoid(z));
% =============================================================
end