1. 程式人生 > >Netty 原始碼分析(一)

Netty 原始碼分析(一)

Netty 實現通訊的步驟:
1.建立兩個NIO執行緒組,一個專門用於網路事件處理(接受客戶端的連線),另一個則進行網路通訊讀寫。
2.建立一個ServerBootstrap物件,配置Netty的一系列引數,例如接受傳出資料的快取大小等。
3.建立一個實際處理資料的類Channellnitalizer,進行初始化的準備工作,比如設定接受傳出資料的字元 格式 以及實際處理資料的介面
4.繫結介面,執行同步阻塞方法等待伺服器啟動即可。

如此簡單的四個步驟,我們的伺服器端就編寫完成了,幾十行程式碼 就可以把之前NIO的程式碼代替。

public class Server {  
  
    public static void main(String[] args) throws Exception {  
        //1 第一個執行緒組 是用於接收Client端連線的  
        EventLoopGroup bossGroup = new NioEventLoopGroup();  
        //2 第二個執行緒組 是用於實際的業務處理操作的  
        EventLoopGroup workerGroup = new NioEventLoopGroup();  
          
        //3 建立一個輔助類Bootstrap,就是對我們的Server進行一系列的配置  
        ServerBootstrap b = new ServerBootstrap();   
        //把倆個工作執行緒組加入進來  
        b.group(bossGroup, workerGroup)  
        //我要指定使用NioServerSocketChannel這種型別的通道  
         .channel(NioServerSocketChannel.class)  
         .option(ChannelOption.SO_BACKLOG, 1024)        //設定tcp列隊緩衝區  
         .option(ChannelOption.SO_SNDBUF, 32*1024)  //設定傳送緩衝大小  
         .option(ChannelOption.SO_RCVBUF, 32*1024)  //這是接收緩衝大小  
         .option(ChannelOption.SO_KEEPALIVE, true)  //保持連線  
        //一定要使用 childHandler 去繫結具體的 事件處理器  
         .childHandler(new ChannelInitializer<SocketChannel>() {  
            @Override  
            protected void initChannel(SocketChannel sc) throws Exception {  
                sc.pipeline().addLast(new ServerHandler());  
            }  
        });  
  
        //繫結指定的埠 進行監聽  
        ChannelFuture f = b.bind(8765).sync();   
          
        //Thread.sleep(1000000);  
        f.channel().closeFuture().sync();  
          
        bossGroup.shutdownGracefully();  
        workerGroup.shutdownGracefully();  
           
          
          
    }  
      
}  

首先看一下EventLoopGroup 的關係


我們來看 EventLoopGroup介面  原始碼

EventLoopGroup繼承了EventExecutorGroup 是一個特殊的EventExecutorGroup , 允許在 select 迴圈時間操作 期間 可以註冊 channel通道

EventLoopGroup   是一個事件迴圈組, EventLoop 是 事件迴圈 其實就是不斷的等待事件發生的死迴圈。

/**
 * Special {@link EventExecutorGroup} which allows registering {@link Channel}s that get
 * processed for later selection during the event loop.
 *
 */
public interface EventLoopGroup extends EventExecutorGroup {
    /**
     * Return the next {@link EventLoop} to use 返回下一個事件迴圈
     */
    @Override
    EventLoop next();

    /**
     * Register a {@link Channel} with this {@link EventLoop}. The returned {@link ChannelFuture}
     * will get notified once the registration was complete. 將一個通道也就是連線註冊到 事件迴圈中,通過ChannelFuture 非同步返回的方法來判斷是否完成
     */
    ChannelFuture register(Channel channel);

    /**
     * Register a {@link Channel} with this {@link EventLoop} using a {@link ChannelFuture}. The passed
     * {@link ChannelFuture} will get notified once the registration was complete and also will get returned.
     */
    ChannelFuture register(ChannelPromise promise);

    /**
     * Register a {@link Channel} with this {@link EventLoop}. The passed {@link ChannelFuture}
     * will get notified once the registration was complete and also will get returned.
     *
     * @deprecated Use {@link #register(ChannelPromise)} instead.
     */
    @Deprecated
    ChannelFuture register(Channel channel, ChannelPromise promise);
}

ChannelFuture 介面 是繼承了Future 介面 ,ChannelPromise 介面 繼承了ChannelFuture 


我們可以看到   ChannelFuture register(Channel channel); 註冊一個通道或者連線 到事件迴圈中,那麼ChannelFuture register(ChannelPromise promise); 是並沒有Channel 如何註冊,可以看ChannelPromise 原始碼裡面 包含了Channel 物件的引用 才能將通道註冊到事件迴圈中。

從上面的圖中可以看出EventExecutorGroup 就是一個執行緒框架,使用next 方法提供EventExecutor事件執行器

/**
 * The {@link EventExecutorGroup} is responsible for providing the {@link EventExecutor}'s to use
 * via its {@link #next()} method. Besides this, it is also responsible for handling their
 * life-cycle and allows shutting them down in a global fashion.
 *
 */
public interface EventExecutorGroup extends ScheduledExecutorService, Iterable<EventExecutor> {

NioEventLoopGroup 類圖:


NioEventLoopGroup原始碼:用於基於NIO Selector 選擇的 channel,

我們有的時候初始化 使用NioEventLoopGroup(1)一個執行緒用於接收Client端連線,預設NioEventLoopGroup()根據原始碼可以看到 是使用我們系統核心*2的執行緒來處理的,從NioEventLoopGroup原始碼 中可以看出 就是進行一些初始化的賦值

/*
 * Copyright 2012 The Netty Project
 *
 * The Netty Project licenses this file to you under the Apache License,
 * version 2.0 (the "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at:
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
package io.netty.channel.nio;

import io.netty.channel.Channel;
import io.netty.channel.EventLoop;
import io.netty.channel.DefaultSelectStrategyFactory;
import io.netty.channel.MultithreadEventLoopGroup;
import io.netty.channel.SelectStrategyFactory;
import io.netty.util.concurrent.EventExecutor;
import io.netty.util.concurrent.EventExecutorChooserFactory;
import io.netty.util.concurrent.RejectedExecutionHandler;
import io.netty.util.concurrent.RejectedExecutionHandlers;

import java.nio.channels.Selector;
import java.nio.channels.spi.SelectorProvider;
import java.util.concurrent.Executor;
import java.util.concurrent.ThreadFactory;

/**
 * {@link MultithreadEventLoopGroup} implementations which is used for NIO {@link Selector} based {@link Channel}s.用於基於NIO Selector 選擇的 channel
 */
public class NioEventLoopGroup extends MultithreadEventLoopGroup {

    /**
     * Create a new instance using the default number of threads, the default {@link ThreadFactory} and
     * the {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.
     */
    public NioEventLoopGroup() {
        this(0); 第一步
    }

    /**
     * Create a new instance using the specified number of threads, {@link ThreadFactory} and the
     * {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.
     */
    public NioEventLoopGroup(int nThreads) {
        this(nThreads, (Executor) null); 第二步
    }

    /**
     * Create a new instance using the specified number of threads, the given {@link ThreadFactory} and the
     * {@link SelectorProvider} which is returned by {@link SelectorProvider#provider()}.
     */
    public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory) {
        this(nThreads, threadFactory, SelectorProvider.provider()); 第三步 
    }

    public NioEventLoopGroup(int nThreads, Executor executor) {
        this(nThreads, executor, SelectorProvider.provider());第四步
    }

    /**
     * Create a new instance using the specified number of threads, the given {@link ThreadFactory} and the given
     * {@link SelectorProvider}.
     */
    public NioEventLoopGroup(
            int nThreads, ThreadFactory threadFactory, final SelectorProvider selectorProvider) {
        this(nThreads, threadFactory, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);第五步
    }

    public NioEventLoopGroup(int nThreads, ThreadFactory threadFactory,
        final SelectorProvider selectorProvider, final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, threadFactory, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());第六步 這時呼叫了父類的方法
    } 那麼我們去看 父類構造方法

    public NioEventLoopGroup(
            int nThreads, Executor executor, final SelectorProvider selectorProvider) {
        this(nThreads, executor, selectorProvider, DefaultSelectStrategyFactory.INSTANCE);
    }

    public NioEventLoopGroup(int nThreads, Executor executor, final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, executor, selectorProvider, selectStrategyFactory, RejectedExecutionHandlers.reject());
    }

    public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                             final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory) {
        super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory,
                RejectedExecutionHandlers.reject());
    }

    public NioEventLoopGroup(int nThreads, Executor executor, EventExecutorChooserFactory chooserFactory,
                             final SelectorProvider selectorProvider,
                             final SelectStrategyFactory selectStrategyFactory,
                             final RejectedExecutionHandler rejectedExecutionHandler) {
        super(nThreads, executor, chooserFactory, selectorProvider, selectStrategyFactory, rejectedExecutionHandler);
    }

    /**
     * Sets the percentage of the desired amount of time spent for I/O in the child event loops.  The default value is
     * {@code 50}, which means the event loop will try to spend the same amount of time for I/O as for non-I/O tasks.
     */
    public void setIoRatio(int ioRatio) {
        for (EventExecutor e: this) {
            ((NioEventLoop) e).setIoRatio(ioRatio);
        }
    }

    /**
     * Replaces the current {@link Selector}s of the child event loops with newly created {@link Selector}s to work
     * around the  infamous epoll 100% CPU bug.
     */
    public void rebuildSelectors() {
        for (EventExecutor e: this) {
            ((NioEventLoop) e).rebuildSelector();
        }
    }

    @Override
    protected EventLoop newChild(Executor executor, Object... args) throws Exception {
        return new NioEventLoop(this, executor, (SelectorProvider) args[0],
            ((SelectStrategyFactory) args[1]).newSelectStrategy(), (RejectedExecutionHandler) args[2]);
    }
}

從靜態初始化方法來看,先衝 配置項中 找io.netty.eventLoopThreads 未配置 按照系統核心*2的執行緒 賦值

/**
 * Abstract base class for {@link EventLoopGroup} implementations that handles their tasks with multiple threads at
 * the same time.
 */
public abstract class MultithreadEventLoopGroup extends MultithreadEventExecutorGroup implements EventLoopGroup {

    private static final InternalLogger logger = InternalLoggerFactory.getInstance(MultithreadEventLoopGroup.class);

    private static final int DEFAULT_EVENT_LOOP_THREADS;

    static {
        DEFAULT_EVENT_LOOP_THREADS = Math.max(1, SystemPropertyUtil.getInt(
                "io.netty.eventLoopThreads", NettyRuntime.availableProcessors() * 2));

        if (logger.isDebugEnabled()) {
            logger.debug("-Dio.netty.eventLoopThreads: {}", DEFAULT_EVENT_LOOP_THREADS);
        }
    }

    /**
     * @see MultithreadEventExecutorGroup#MultithreadEventExecutorGroup(int, Executor, Object...)
     */
    protected MultithreadEventLoopGroup(int nThreads, Executor executor, Object... args) {
        super(nThreads == 0 ? DEFAULT_EVENT_LOOP_THREADS : nThreads, executor, args); 第七步 我們在看父類的構造方法 
    }
MultithreadEventExecutorGroup  原始碼:

   Eexecutor作為靈活且強大的非同步執行框架,其支援多種不同型別的任務執行策略,提供了一種標準的方法將任務的提交過程和執行過程解耦開發,基於生產者-消費者模式,其提交任務的執行緒相當於生產者,執行任務的執行緒相當於消費者,並用Runnable來表示任務,Executor的實現還提供了對生命週期的支援,以及統計資訊收集,應用程式管理機制和效能監視等機制。

/**
 * Abstract base class for {@link EventExecutorGroup} implementations that handles their tasks with multiple threads at
 * the same time.
 */
public abstract class MultithreadEventExecutorGroup extends AbstractEventExecutorGroup {

    private final EventExecutor[] children;
    private final Set<EventExecutor> readonlyChildren;
    private final AtomicInteger terminatedChildren = new AtomicInteger();
    private final Promise<?> terminationFuture = new DefaultPromise(GlobalEventExecutor.INSTANCE);
    private final EventExecutorChooserFactory.EventExecutorChooser chooser;

    /**
     * Create a new instance.
     *
     * @param nThreads          the number of threads that will be used by this instance.
     * @param threadFactory     the ThreadFactory to use, or {@code null} if the default should be used.
     * @param args              arguments which will passed to each {@link #newChild(Executor, Object...)} call
     */
    protected MultithreadEventExecutorGroup(int nThreads, ThreadFactory threadFactory, Object... args) {
        this(nThreads, threadFactory == null ? null : new ThreadPerTaskExecutor(threadFactory), args);
    }

    /**
     * Create a new instance.
     *
     * @param nThreads          the number of threads that will be used by this instance.
     * @param executor          the Executor to use, or {@code null} if the default should be used.
     * @param args              arguments which will passed to each {@link #newChild(Executor, Object...)} call
     */
    protected MultithreadEventExecutorGroup(int nThreads, Executor executor, Object... args) {
        this(nThreads, executor, DefaultEventExecutorChooserFactory.INSTANCE, args);
    }

    /**
     * Create a new instance.
     *
     * @param nThreads          the number of threads that will be used by this instance.
     * @param executor          the Executor to use, or {@code null} if the default should be used.
     * @param chooserFactory    the {@link EventExecutorChooserFactory} to use.
     * @param args              arguments which will passed to each {@link #newChild(Executor, Object...)} call
     */
    protected MultithreadEventExecutorGroup(int nThreads, Executor executor,
                                            EventExecutorChooserFactory chooserFactory, Object... args) {
        if (nThreads <= 0) { 第八步
            throw new IllegalArgumentException(String.format("nThreads: %d (expected: > 0)", nThreads));
        }

        if (executor == null) {
            executor = new ThreadPerTaskExecutor(newDefaultThreadFactory());
        }

        children = new EventExecutor[nThreads];

        for (int i = 0; i < nThreads; i ++) {
            boolean success = false;
            try {
                children[i] = newChild(executor, args);
                success = true;
            } catch (Exception e) {
                // TODO: Think about if this is a good exception type
                throw new IllegalStateException("failed to create a child event loop", e);
            } finally {
                if (!success) {
                    for (int j = 0; j < i; j ++) {
                        children[j].shutdownGracefully();
                    }

                    for (int j = 0; j < i; j ++) {
                        EventExecutor e = children[j];
                        try {
                            while (!e.isTerminated()) {
                                e.awaitTermination(Integer.MAX_VALUE, TimeUnit.SECONDS);
                            }
                        } catch (InterruptedException interrupted) {
                            // Let the caller handle the interruption.
                            Thread.currentThread().interrupt();
                            break;
                        }
                    }
                }
            }
        }

        chooser = chooserFactory.newChooser(children);

        final FutureListener<Object> terminationListener = new FutureListener<Object>() {
            @Override
            public void operationComplete(Future<Object> future) throws Exception {
                if (terminatedChildren.incrementAndGet() == children.length) {
                    terminationFuture.setSuccess(null);
                }
            }
        };

        for (EventExecutor e: children) {
            e.terminationFuture().addListener(terminationListener);
        }

        Set<EventExecutor> childrenSet = new LinkedHashSet<EventExecutor>(children.length);
        Collections.addAll(childrenSet, children);
        readonlyChildren = Collections.unmodifiableSet(childrenSet);
    }

    protected ThreadFactory newDefaultThreadFactory() {
        return new DefaultThreadFactory(getClass());
    }

    @Override
    public EventExecutor next() {
        return chooser.next();
    }

    @Override
    public Iterator<EventExecutor> iterator() {
        return readonlyChildren.iterator();
    }

    /**
     * Return the number of {@link EventExecutor} this implementation uses. This number is the maps
     * 1:1 to the threads it use.
     */
    public final int executorCount() {
        return children.length;
    }

    /**
     * Create a new EventExecutor which will later then accessible via the {@link #next()}  method. This method will be
     * called for each thread that will serve this {@link MultithreadEventExecutorGroup}.
     *
     */
    protected abstract EventExecutor newChild(Executor executor, Object... args) throws Exception;

建立執行緒執行器

public final class ThreadPerTaskExecutor implements Executor {
    private final ThreadFactory threadFactory;

    public ThreadPerTaskExecutor(ThreadFactory threadFactory) {
        if (threadFactory == null) {
            throw new NullPointerException("threadFactory");
        }
        this.threadFactory = threadFactory;
    }

    @Override
    public void execute(Runnable command) {
        threadFactory.newThread(command).start();
    }
}

建立執行緒工廠

/**
 * A {@link ThreadFactory} implementation with a simple naming rule.
 */
public class DefaultThreadFactory implements ThreadFactory {

    private static final AtomicInteger poolId = new AtomicInteger();

    private final AtomicInteger nextId = new AtomicInteger();
    private final String prefix;
    private final boolean daemon;
    private final int priority;
    protected final ThreadGroup threadGroup;

    public DefaultThreadFactory(Class<?> poolType) {
        this(poolType, false, Thread.NORM_PRIORITY);
    }

    public DefaultThreadFactory(String poolName) {
        this(poolName, false, Thread.NORM_PRIORITY);
    }

    public DefaultThreadFactory(Class<?> poolType, boolean daemon) {
        this(poolType, daemon, Thread.NORM_PRIORITY);
    }

    public DefaultThreadFactory(String poolName, boolean daemon) {
        this(poolName, daemon, Thread.NORM_PRIORITY);
    }

    public DefaultThreadFactory(Class<?> poolType, int priority) {
        this(poolType, false, priority);
    }

    public DefaultThreadFactory(String poolName, int priority) {
        this(poolName, false, priority);
    }

    public DefaultThreadFactory(Class<?> poolType, boolean daemon, int priority) {
        this(toPoolName(poolType), daemon, priority);
    }

    public static String toPoolName(Class<?> poolType) {
        if (poolType == null) {
            throw new NullPointerException("poolType");
        }

        String poolName = StringUtil.simpleClassName(poolType);
        switch (poolName.length()) {
            case 0:
                return "unknown";
            case 1:
                return poolName.toLowerCase(Locale.US);
            default:
                if (Character.isUpperCase(poolName.charAt(0)) && Character.isLowerCase(poolName.charAt(1))) {
                    return Character.toLowerCase(poolName.charAt(0)) + poolName.substring(1);
                } else {
                    return poolName;
                }
        }
    }

    public DefaultThreadFactory(String poolName, boolean daemon, int priority, ThreadGroup threadGroup) {
        if (poolName == null) {
            throw new NullPointerException("poolName");
        }
        if (priority < Thread.MIN_PRIORITY || priority > Thread.MAX_PRIORITY) {
            throw new IllegalArgumentException(
                    "priority: " + priority + " (expected: Thread.MIN_PRIORITY <= priority <= Thread.MAX_PRIORITY)");
        }

        prefix = poolName + '-' + poolId.incrementAndGet() + '-';
        this.daemon = daemon;
        this.priority = priority;
        this.threadGroup = threadGroup;
    }

    public DefaultThreadFactory(String poolName, boolean daemon, int priority) {
        this(poolName, daemon, priority, System.getSecurityManager() == null ?
                Thread.currentThread().getThreadGroup() : System.getSecurityManager().getThreadGroup());
    }

    @Override
    public Thread newThread(Runnable r) {
        Thread t = newThread(new DefaultRunnableDecorator(r), prefix + nextId.incrementAndGet());
        try {
            if (t.isDaemon() != daemon) {
                t.setDaemon(daemon);
            }

            if (t.getPriority() != priority) {
                t.setPriority(priority);
            }
        } catch (Exception ignored) {
            // Doesn't matter even if failed to set.
        }
        return t;
    }

    protected Thread newThread(Runnable r, String name) {
        return new FastThreadLocalThread(threadGroup, r, name);
    }

    private static final class DefaultRunnableDecorator implements Runnable {

        private final Runnable r;

        DefaultRunnableDecorator(Runnable r) {
            this.r = r;
        }

        @Override
        public void run() {
            try {
                r.run();
            } finally {
                FastThreadLocal.removeAll();
            }
        }
    }
}


EventExecutorGroup :提供next()方法 返回EventExecutor

/**
 * The {@link EventExecutorGroup} is responsible for providing the {@link EventExecutor}'s to use
 * via its {@link #next()} method. Besides this, it is also responsible for handling their
 * life-cycle and allows shutting them down in a global fashion.
 *
 */
public interface EventExecutorGroup extends ScheduledExecutorService, Iterable<EventExecutor> {

    /**
     * Returns {@code true} if and only if all {@link EventExecutor}s managed by this {@link EventExecutorGroup}
     * are being {@linkplain #shutdownGracefully() shut down gracefully} or was {@linkplain #isShutdown() shut down}.
     */
    boolean isShuttingDown();

    /**
     * Shortcut method for {@link #shutdownGracefully(long, long, TimeUnit)} with sensible default values.
     *
     * @return the {@link #terminationFuture()}
     */
    Future<?> shutdownGracefully();

    /**
     * Signals this executor that the caller wants the executor to be shut down.  Once this method is called,
     * {@link #isShuttingDown()} starts to return {@code true}, and the executor prepares to shut itself down.
     * Unlike {@link #shutdown()}, graceful shutdown ensures that no tasks are submitted for <i>'the quiet period'</i>
     * (usually a couple seconds) before it shuts itself down.  If a task is submitted during the quiet period,
     * it is guaranteed to be accepted and the quiet period will start over.
     *
     * @param quietPeriod the quiet period as described in the documentation
     * @param timeout     the maximum amount of time to wait until the executor is {@linkplain #shutdown()}
     *                    regardless if a task was submitted during the quiet period
     * @param unit        the unit of {@code quietPeriod} and {@code timeout}
     *
     * @return the {@link #terminationFuture()}
     */
    Future<?> shutdownGracefully(long quietPeriod, long timeout, TimeUnit unit);

    /**
     * Returns the {@link Future} which is notified when all {@link EventExecutor}s managed by this
     * {@link EventExecutorGroup} have been terminated.
     */
    Future<?> terminationFuture();

    /**
     * @deprecated {@link #shutdownGracefully(long, long, TimeUnit)} or {@link #shutdownGracefully()} instead.
     */
    @Override
    @Deprecated
    void shutdown();

    /**
     * @deprecated {@link #shutdownGracefully(long, long, TimeUnit)} or {@link #shutdownGracefully()} instead.
     */
    @Override
    @Deprecated
    List<Runnable> shutdownNow();

    /**
     * Returns one of the {@link EventExecutor}s managed by this {@link EventExecutorGroup}.
     */
    EventExecutor next();

    @Override
    Iterator<EventExecutor> iterator();

    @Override
    Future<?> submit(Runnable task);

    @Override
    <T> Future<T> submit(Runnable task, T result);

    @Override
    <T> Future<T> submit(Callable<T> task);

    @Override
    ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);

    @Override
    <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);

    @Override
    ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit);

    @Override
    ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit);
}