1. 程式人生 > >機器學習sklearn19.0聚類演算法——Kmeans演算法

機器學習sklearn19.0聚類演算法——Kmeans演算法

一、關於聚類及相似度、距離的知識點






二、k-means演算法思想與流程










三、sklearn中對於kmeans演算法的引數


四、程式碼示例以及應用的知識點簡介

(1)make_blobs:聚類資料生成器


sklearn.datasets.make_blobs(n_samples=100, n_features=2,centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None)[source]



返回值為:




(2)np.vstack方法作用——堆疊陣列

詳細介紹參照部落格連結:http://blog.csdn.net/csdn15698845876/article/details/73380803



#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

#k-means聚類演算法

import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
import sklearn.datasets as ds
from sklearn.cluster import KMeans      #引入kmeans

#解決中文顯示問題
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

#產生模擬資料
N = 1500
centers = 4
#make_blobs:聚類資料生成器
data,y = ds.make_blobs(N,n_features=2,centers=centers,random_state=28)

data2,y2 = ds.make_blobs(N,n_features=2,centers=centers,random_state=28)
data3 = np.vstack((data[y==0][:200],data[y==1][:100],data[y==2][:10],data[y==3][:50]))
y3 = np.array([0]*200+[1]*100+[2]*10+[3]*50)

#模型的構建
km = KMeans(n_clusters=centers,random_state=28)
km.fit(data,y)
y_hat = km.predict(data)
print("所有樣本距離聚簇中心點的總距離和:",km.inertia_)
print("距離聚簇中心點的平均距離:",(km.inertia_/N))
print("聚簇中心點:",km.cluster_centers_)

y_hat2 = km.fit_predict(data2)
y_hat3 = km.fit_predict(data3)

def expandBorder(a, b):
    d = (b - a) * 0.1
    return a-d, b+d

#畫圖
cm = mpl.colors.ListedColormap(list("rgbmyc"))
plt.figure(figsize=(15,9),facecolor="w")
plt.subplot(241)
plt.scatter(data[:,0],data[:,1],c=y,s=30,cmap=cm,edgecolors="none")

x1_min,x2_min = np.min(data,axis=0)
x1_max,x2_max = np.max(data,axis=0)
x1_min,x1_max = expandBorder(x1_min,x1_max)
x2_min,x2_max = expandBorder(x2_min,x2_max)
plt.xlim((x1_min,x1_max))
plt.ylim((x2_min,x2_max))
plt.title("原始資料")
plt.grid(True)

plt.subplot(242)
plt.scatter(data[:, 0], data[:, 1], c=y_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'K-Means演算法聚類結果')
plt.grid(True)

m = np.array(((1, 1), (0.5, 5)))
data_r = data.dot(m)
y_r_hat = km.fit_predict(data_r)
plt.subplot(243)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y, s=30, cmap=cm, edgecolors='none')

x1_min, x2_min = np.min(data_r, axis=0)
x1_max, x2_max = np.max(data_r, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)

plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'資料旋轉後原始資料圖')
plt.grid(True)

plt.subplot(244)
plt.scatter(data_r[:, 0], data_r[:, 1], c=y_r_hat, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'資料旋轉後預測圖')
plt.grid(True)

plt.subplot(245)
plt.scatter(data2[:, 0], data2[:, 1], c=y2, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data2, axis=0)
x1_max, x2_max = np.max(data2, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差的原始資料')
plt.grid(True)

plt.subplot(246)
plt.scatter(data2[:, 0], data2[:, 1], c=y_hat2, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同方差簇資料的K-Means演算法聚類結果')
plt.grid(True)

plt.subplot(247)
plt.scatter(data3[:, 0], data3[:, 1], c=y3, s=30, cmap=cm, edgecolors='none')
x1_min, x2_min = np.min(data3, axis=0)
x1_max, x2_max = np.max(data3, axis=0)
x1_min, x1_max = expandBorder(x1_min, x1_max)
x2_min, x2_max = expandBorder(x2_min, x2_max)
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇樣本數量原始資料圖')
plt.grid(True)

plt.subplot(248)
plt.scatter(data3[:, 0], data3[:, 1], c=y_hat3, s=30, cmap=cm, edgecolors='none')
plt.xlim((x1_min, x1_max))
plt.ylim((x2_min, x2_max))
plt.title(u'不同簇樣本數量的K-Means演算法聚類結果')
plt.grid(True)

plt.tight_layout(2, rect=(0, 0, 1, 0.97))
plt.suptitle(u'資料分佈對KMeans聚類的影響', fontsize=18)
plt.savefig("k-means聚類演算法.png")
plt.show()

#執行結果:
所有樣本距離聚簇中心點的總距離和: 2592.9990199
距離聚簇中心點的平均距離: 1.72866601327
聚簇中心點: [[ -7.44342199e+00  -2.00152176e+00]
 [  5.80338598e+00   2.75272962e-03]
 [ -6.36176159e+00   6.94997331e+00]
 [  4.34372837e+00   1.33977807e+00]]
















程式碼中用到的知識點:


#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

#kmean與mini batch kmeans 演算法的比較

import time
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn.datasets.samples_generator import make_blobs
from sklearn.metrics.pairwise import pairwise_distances_argmin

#解決中文顯示問題
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

#初始化三個中心
centers = [[1,1],[-1,-1],[1,-1]]
clusters = len(centers)     #聚類數目為3
#產生3000組二維資料樣本,三個中心點,標準差是0.7
X,Y = make_blobs(n_samples=300,centers=centers,cluster_std=0.7,random_state=28)

#構建kmeans演算法
k_means =  KMeans(init="k-means++",n_clusters=clusters,random_state=28)
t0 = time.time()
k_means.fit(X)      #模型訓練
km_batch = time.time()-t0       #使用kmeans訓練資料消耗的時間
print("K-Means演算法模型訓練消耗時間:%.4fs"%km_batch)

#構建mini batch kmeans演算法
batch_size = 100        #取樣集的大小
mbk = MiniBatchKMeans(init="k-means++",n_clusters=clusters,batch_size=batch_size,random_state=28)
t0 = time.time()
mbk.fit(X)
mbk_batch = time.time()-t0
print("Mini Batch K-Means演算法模型訓練消耗時間:%.4fs"%mbk_batch)

#預測結果
km_y_hat = k_means.predict(X)
mbk_y_hat = mbk.predict(X)

#獲取聚類中心點並對其排序
k_means_cluster_center = k_means.cluster_centers_
mbk_cluster_center = mbk.cluster_centers_
print("K-Means演算法聚類中心點:\n center=",k_means_cluster_center)
print("Mini Batch K-Means演算法聚類中心點:\n center=",mbk_cluster_center)
order = pairwise_distances_argmin(k_means_cluster_center,mbk_cluster_center)

#畫圖
plt.figure(figsize=(12,6),facecolor="w")
plt.subplots_adjust(left=0.05,right=0.95,bottom=0.05,top=0.9)
cm = mpl.colors.ListedColormap(['#FFC2CC', '#C2FFCC', '#CCC2FF'])
cm2 = mpl.colors.ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

#子圖1——原始資料
plt.subplot(221)
plt.scatter(X[:,0],X[:,1],c=Y,s=6,cmap=cm,edgecolors="none")
plt.title(u"原始資料分佈圖")
plt.xticks(())
plt.yticks(())
plt.grid(True)

#子圖2:K-Means演算法聚類結果圖
plt.subplot(222)
plt.scatter(X[:,0], X[:,1], c=km_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(k_means_cluster_center[:,0], k_means_cluster_center[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'K-Means演算法聚類結果圖')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3,  'train time: %.2fms' % (km_batch*1000))
plt.grid(True)

#子圖三Mini Batch K-Means演算法聚類結果圖
plt.subplot(223)
plt.scatter(X[:,0], X[:,1], c=mbk_y_hat, s=6, cmap=cm,edgecolors='none')
plt.scatter(mbk_cluster_center[:,0], mbk_cluster_center[:,1],c=range(clusters),s=60,cmap=cm2,edgecolors='none')
plt.title(u'Mini Batch K-Means演算法聚類結果圖')
plt.xticks(())
plt.yticks(())
plt.text(-3.8, 3,  'train time: %.2fms' % (mbk_batch*1000))
plt.grid(True)
plt.savefig("kmean與mini batch kmeans 演算法的比較.png")
plt.show()

#執行結果:
K-Means演算法模型訓練消耗時間:0.2260s
Mini Batch K-Means演算法模型訓練消耗時間:0.0230s
K-Means演算法聚類中心點:
 center= [[ 0.96091862  1.13741775]
 [ 1.1979318  -1.02783007]
 [-0.98673669 -1.09398768]]
Mini Batch K-Means演算法聚類中心點:
 center= [[ 1.34304199 -1.01641075]
 [ 0.83760683  1.01229021]
 [-0.92702179 -1.08205992]]


五、聚類演算法的衡量指標






#!/usr/bin/env python
# -*- coding:utf-8 -*-
# Author:ZhengzhengLiu

#聚類演算法評估

import time
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.colors
from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn import metrics
from sklearn.metrics.pairwise import pairwise_distances_argmin
from sklearn.datasets.samples_generator import make_blobs

#解決中文顯示問題
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False

#初始化三個中心
centers = [[1,1],[-1,-1],[1,-1]]
clusters = len(centers)     #聚類數目為3
#產生3000組二維資料樣本,三個中心點,標準差是0.7
X,Y = make_blobs(n_samples=300,centers=centers,cluster_std=0.7,random_state=28)

#構建kmeans演算法
k_means =  KMeans(init="k-means++",n_clusters=clusters,random_state=28)
t0 = time.time()
k_means.fit(X)      #模型訓練
km_batch = time.time()-t0       #使用kmeans訓練資料消耗的時間
print("K-Means演算法模型訓練消耗時間:%.4fs"%km_batch)

#構建mini batch kmeans演算法
batch_size = 100        #取樣集的大小
mbk = MiniBatchKMeans(init="k-means++",n_clusters=clusters,batch_size=batch_size,random_state=28)
t0 = time.time()
mbk.fit(X)
mbk_batch = time.time()-t0
print("Mini Batch K-Means演算法模型訓練消耗時間:%.4fs"%mbk_batch)

km_y_hat = k_means.labels_
mbkm_y_hat = mbk.labels_

k_means_cluster_centers = k_means.cluster_centers_
mbk_means_cluster_centers = mbk.cluster_centers_
print ("K-Means演算法聚類中心點:\ncenter=", k_means_cluster_centers)
print ("Mini Batch K-Means演算法聚類中心點:\ncenter=", mbk_means_cluster_centers)
order = pairwise_distances_argmin(k_means_cluster_centers,
                                  mbk_means_cluster_centers)

#效果評估
### 效果評估
score_funcs = [
    metrics.adjusted_rand_score,    #ARI(調整蘭德指數)
    metrics.v_measure_score,        #均一性與完整性的加權平均
    metrics.adjusted_mutual_info_score, #AMI(調整互資訊)
    metrics.mutual_info_score,      #互資訊
]

## 2. 迭代對每個評估函式進行評估操作
for score_func in score_funcs:
    t0 = time.time()
    km_scores = score_func(Y, km_y_hat)
    print("K-Means演算法:%s評估函式計算結果值:%.5f;計算消耗時間:%0.3fs" % (score_func.__name__, km_scores, time.time() - t0))

    t0 = time.time()
    mbkm_scores = score_func(Y, mbkm_y_hat)
    print("Mini Batch K-Means演算法:%s評估函式計算結果值:%.5f;計算消耗時間:%0.3fs\n" % (score_func.__name__, mbkm_scores, time.time() - t0))

#執行結果:
K-Means演算法模型訓練消耗時間:0.6350s
Mini Batch K-Means演算法模型訓練消耗時間:0.0900s
K-Means演算法聚類中心點:
center= [[ 0.96091862  1.13741775]
 [ 1.1979318  -1.02783007]
 [-0.98673669 -1.09398768]]
Mini Batch K-Means演算法聚類中心點:
center= [[ 1.34304199 -1.01641075]
 [ 0.83760683  1.01229021]
 [-0.92702179 -1.08205992]]
K-Means演算法:adjusted_rand_score評估函式計算結果值:0.72566;計算消耗時間:0.071s
Mini Batch K-Means演算法:adjusted_rand_score評估函式計算結果值:0.69544;計算消耗時間:0.001s

K-Means演算法:v_measure_score評估函式計算結果值:0.67529;計算消耗時間:0.004s
Mini Batch K-Means演算法:v_measure_score評估函式計算結果值:0.65055;計算消耗時間:0.004s

K-Means演算法:adjusted_mutual_info_score評估函式計算結果值:0.67263;計算消耗時間:0.006s
Mini Batch K-Means演算法:adjusted_mutual_info_score評估函式計算結果值:0.64731;計算消耗時間:0.005s

K-Means演算法:mutual_info_score評估函式計算結果值:0.74116;計算消耗時間:0.002s
Mini Batch K-Means演算法:mutual_info_score評估函式計算結果值:0.71351;計算消耗時間:0.001s