1. 程式人生 > >Housing Prices Competition

Housing Prices Competition

# Code you have previously used to load data
import pandas as pd
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor




# Path of the file to read. We changed the directory structure to simplify submitting to a competition
iowa_file_path = r'G:/kaggle/housePrice/train.csv' home_data = pd.read_csv(iowa_file_path) # Create target object and call it y y = home_data.SalePrice # Create X features = ['LotArea','YearBuilt', '1stFlrSF', '2ndFlrSF', 'FullBath', 'BedroomAbvGr', 'TotRmsAbvGrd', 'MSSubClass','OverallQual'
,'OverallCond','YearRemodAdd','MasVnrArea','BsmtFullBath','BsmtHalfBath','HalfBath','KitchenAbvGr','TotRmsAbvGrd','Fireplaces','GarageCars','GarageArea','PoolArea'] X = home_data[features] #handle NaN , mean values every column from sklearn.impute import SimpleImputer my_imputer = SimpleImputer() X =
my_imputer.fit_transform(X) # Split into validation and training data train_X, val_X, train_y, val_y = train_test_split(X, y, random_state=1) # Specify Model iowa_model = DecisionTreeRegressor(random_state=1) # Fit Model iowa_model.fit(train_X, train_y) # Make validation predictions and calculate mean absolute error val_predictions = iowa_model.predict(val_X) val_mae = mean_absolute_error(val_predictions, val_y) print("Validation MAE when not specifying max_leaf_nodes: {:,.0f}".format(val_mae)) # Using best value for max_leaf_nodes iowa_model = DecisionTreeRegressor(max_leaf_nodes=100, random_state=1) iowa_model.fit(train_X, train_y) val_predictions = iowa_model.predict(val_X) val_mae = mean_absolute_error(val_predictions, val_y) print("Validation MAE for best value of max_leaf_nodes: {:,.0f}".format(val_mae)) # Define the model. Set random_state to 1 rf_model = RandomForestRegressor(random_state=1) rf_model.fit(train_X, train_y) rf_val_predictions = rf_model.predict(val_X) rf_val_mae = mean_absolute_error(rf_val_predictions, val_y) print("Validation MAE for Random Forest Model: {:,.0f}".format(rf_val_mae))
Validation MAE when not specifying max_leaf_nodes: 28,365
Validation MAE for best value of max_leaf_nodes: 26,087
Validation MAE for Random Forest Model: 18,974


d:\python27\lib\site-packages\sklearn\ensemble\forest.py:248: FutureWarning: The default value of n_estimators will change from 10 in version 0.20 to 100 in 0.22.
  "10 in version 0.20 to 100 in 0.22.", FutureWarning)

Create a model :採用了Random Forest

# To improve accuracy, create a new Random Forest model which you will train on all training data
rf_model_on_full_data = RandomForestRegressor(random_state=1)

# fit rf_model_on_full_data on all data from the 
rf_model_on_full_data.fit(X,y)
RandomForestRegressor(bootstrap=True, criterion='mse', max_depth=None,
           max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
           min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=None,
           oob_score=False, random_state=1, verbose=0, warm_start=False)

Make predictions

# path to file you will use for predictions
test_data_path = r'G:/kaggle/housePrice/test.csv'

# read test data file using pandas
test_data = pd.read_csv(test_data_path)

# create test_X which comes from test_data but includes only the columns you used for prediction.
# The list of columns is stored in a variable called features
test_X = test_data[features]

#handle NaN , mean values every column
from sklearn.impute import SimpleImputer
my_imputer = SimpleImputer()
test_X = my_imputer.fit_transform(test_X)

# make predictions which we will submit. 
test_preds = rf_model_on_full_data.predict(test_X)

# The lines below shows you how to save your data in the format needed to score it in the competition
output = pd.DataFrame({'Id': test_data.Id,
                       'SalePrice': test_preds})

output.to_csv(r'G:/kaggle/housePrice/submission.csv',index=0)
output.head()
	Id	SalePrice
0	1461	121550.8
1	1462	151415.0
2	1463	174114.0
3	1464	175490.0
4	1465	201250.0