1. 程式人生 > >G++下如何編譯執行C++11多執行緒程式碼

G++下如何編譯執行C++11多執行緒程式碼

安裝G++的指令:

1. 編輯源程式:sudo apt-get install g++

    vim hello.cpp

  1. #include <iostream>
  2. #include <thread>
  3. void func(int x)  
  4. {  
  5.     std::cout << x << "    new thread\n";  
  6. }  
  7. int main()  
  8. {  
  9.     std::cout << "hello world\n";  
  10.     std::thread t(func, 8);  
  11.     t.join();  
  12.     std::cout << "end thread\n"
    ;  
  13.     return 0;  
  14. }  

2. 編譯程式

    g++ -std=c++0x -pthread  hello.cpp -o hello

3. 執行程式

    ./hello

注意編譯的時候所帶的引數,若不帶-pthread,編譯可以通過,執行會出現以下問題。

  1. terminate called after throwing an instance of 'std::system_error'  
  2.   what():  Operation not permitted  
  3. Aborted (core dumped) 

相關推薦

G++如何編譯執行C++11執行程式碼

安裝G++的指令:1. 編輯源程式:sudo apt-get install g++    vim hello.cpp#include <iostream>#include <thre

C++ 11 執行std::unique_lock與std::lock_guard的區別和用法

這裡主要介紹std::unique_lock與std::lock_guard的區別用法 先說簡單的 一、std::lock_guard的用法 std::lock_guard其實就是簡單的RAII封裝,在建構函式中進行加鎖,解構函式中進行解鎖,這樣可以保證函式退出時,鎖一定被釋放。 簡單來說,就是防止開

C++11 併發指南九(綜合運用: C++11 執行生產者消費者模型詳解)

前面八章介紹了 C++11 併發程式設計的基礎(抱歉哈,第五章-第八章還在草稿中),本文將綜合運用 C++11 中的新的基礎設施(主要是多執行緒、鎖、條件變數)來闡述一個經典問題——生產者消費者模型,並給出完整的解決方案。 生產者消費者問題是多執行緒併發中一個非常經典的問題,相信學過作業系統課程的同學都清楚

gcc編譯選項:c++11 執行編譯

c++11原生支援多執行緒程式設計,如下程式碼(假設檔名為test.cpp): #include <iostream> #include <future> using namespace std; int main() {  auto fr0 =

C++11 執行生產者消費者模型詳解

 前面八章介紹了 C++11 併發程式設計的基礎(抱歉哈,第五章-第八章還在草稿中),本文將綜合運用 C++11 中的新的基礎設施(主要是多執行緒、鎖、條件變數)來闡述一個經典問題——生產者消費者模型,並給出完整的解決方案。 生產者消費者問題是多執行緒併發中一個非常

C++11 執行gcc編譯簡單示例

1. 編輯源程式     vim hello.cpp #include <iostream> #include <thread> void func(int x) { std::cout << x << "

[轉]c++11 執行 future/promise

[轉自 https://blog.csdn.net/jiange_zh/article/details/51602938] 1. < future >標頭檔案簡介 Classes std::future std::future_error std::packaged_task std::pro

c++11執行 thread

 1.thread建構函式 default (1) thread() noexcept; initialization (2) template <class Fn, class... Args> explicit

C++11 執行執行共享資料

共享資料的問題 這些在作業系統中都有詳細的介紹,可以回顧作業系統課程。。很典型的就是資料競爭問題。 互斥量保護資料 最原始的方式:使用std::mutex建立互斥量,使用成員lock()加鎖,使用成員unlock()解鎖。但是這種方式需要我們在每個函數出口都呼叫一次unloc

c++11執行執行

最近需要開發一個高效能運算庫,涉及到c++多執行緒的應用,上次做類似的事情已經是4年多以前了,印象中還頗有些麻煩。悔當初做了就算了,也沒想著留點記錄什麼的。這次又研究了一番,發現用上c++11特性之後,現在已經比較簡單了,在此記錄一下。   最簡單的多執行緒情況,不涉及公共變數,各個執行緒之間獨

C++11執行(1)

        C++11中添加了duox多執行緒類,編寫C++程式可以直接使用C++11中的多執行緒庫,不必依賴於平臺多執行緒,這樣可以方便寫出誇平臺的多執行緒程式。多執行緒可以最大化利用計算機資源,提高程式碼的執行效率。         C++11中thread類提供兩

C++11執行------std::async

std::async可以認為是封裝了一個std::promise,該函式返回一個std::future,用於獲取其他執行緒的資料。 一般有兩種模式: std::lanch::async:最常用的非同步模式,每次都要執行一遍 std::lanch::defer:只在第

C++11執行---互斥量、鎖、條件變數的總結

關於互斥量std::mutex的總結 互斥量用於組成程式碼的臨界區。C++的多執行緒模型是基於記憶體的,或者說是基於程式碼片段的,這和我們作業系統學習的臨界區概念基本一致,但是與Golang不同,Golang是基於訊息模型的。 一個std::mutex的lock()和unlock

C++11執行的原子操作

原子操作是同時只能有一個執行緒執行一個操作,不用使用互斥量即可實現,但是速度慢,而且一般只支援原生的型別,不夠靈活。更多的用處是作為訊號量進行使用。 示例程式碼,以int為例子: #include <atomic> #include <thread> #i

C++ 11 執行--執行管理

說到多執行緒程式設計,那麼就不得不提並行和併發,多執行緒是實現併發(並行)的一種手段。並行是指兩個或多個獨立的操作同時進行。注意這裡是同時進行,區別於併發,在一個時間段內執行多個操作。在單核時代,多個執行緒是併發的,在一個時間段內輪流執行;在多核時代,多個執行緒可以實現真正的並行,在多核上真正獨立的並行執行。

C++11執行程式設計 緒論及總結

C++11多執行緒程式設計 這一系列文章是從 https://thispointer.com/c11-multithreading-tutorial-series/ 轉過來的, 本來想翻譯一下, 但看了些內容, 用詞都不難, 讀英文沒有太大難度, 翻譯過來反而怕用詞不準畫蛇添

C++11執行程式設計 第十章: 使用packaged_task優雅的讓同步函式非同步執行

C++11 Multithreading – Part 10: packaged_task<> Example and Tutorial Varun July 2, 2017 C++11 Multithreading – Part 10: packaged_tas

C++11執行程式設計 第九章: std::async 更更優雅的寫執行

C++11 Multithreading – Part 9: std::async Tutorial & Example Varun May 5, 2017 C++11 Multithreading – Part 9: std::async Tutorial &

C++11執行程式設計 第八章: 使用 std::future std::promise 更優雅的獲取執行返回值

C++11 Multithreading – Part 8: std::future , std::promise and Returning values from Thread Varun June 20, 2015 C++11 Multithreading – Part

C++11執行程式設計 第七章: 條件變數及其使用方法

C++11 Multithreading – Part 7: Condition Variables Explained Varun June 2, 2015 C++11 Multithreading – Part 7: Condition Variables Explain