1. 程式人生 > >SPI裝置端驅動編寫----基於linux4.9 driver核心層

SPI裝置端驅動編寫----基於linux4.9 driver核心層

【前序】

linux下寫驅動是站在巨人的肩膀上做開發,不用完全從頭做起,甚至你不需要懂SPI時序,照樣能寫出可用的驅動,原因是:控制器驅動一般晶片商早已寫好(linux4.9中針對xilinx zynqmp系列cpu是 drivers/spi/spi-cadence.c),怎麼發、怎麼操作CPU暫存器這些細節都是控制器驅動乾的事,裝置端驅動不需要關心。
我們所要做的便是用核心層提供的API註冊進去,呼叫核心層傳送函式,將資料發出去,收回來。linux4.9中核心層drivers/spi/spi.c。

一、重要的資料結構與核心層API

1. struct spi_transfer;

/*---------------------------------------------------------------------------*/
/* * I/O INTERFACE between SPI controller and protocol drivers * * Protocol drivers use a queue of spi_messages, each transferring data * between the controller and memory buffers. * * The spi_messages themselves consist of a series of read+write transfer * segments. Those segments always read
the same number of bits as they * write; but one or the other is easily ignored by passing a null buffer * pointer. (This is unlike most types of I/O API, because SPI hardware * is full duplex.) * * NOTE: Allocation of spi_transfer and spi_message memory is entirely * up to the protocol driver, which guarantees the
integrity of both (as * well as the data buffers) for as long as the message is queued. */ /** * struct spi_transfer - a read/write buffer pair * @tx_buf: data to be written (dma-safe memory), or NULL * @rx_buf: data to be read (dma-safe memory), or NULL * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped * @tx_nbits: number of bits used for writing. If 0 the default * (SPI_NBITS_SINGLE) is used. * @rx_nbits: number of bits used for reading. If 0 the default * (SPI_NBITS_SINGLE) is used. * @len: size of rx and tx buffers (in bytes) * @speed_hz: Select a speed other than the device default for this * transfer. If 0 the default (from @spi_device) is used. * @bits_per_word: select a bits_per_word other than the device default * for this transfer. If 0 the default (from @spi_device) is used. * @cs_change: affects chipselect after this transfer completes * @delay_usecs: microseconds to delay after this transfer before * (optionally) changing the chipselect status, then starting * the next transfer or completing this @spi_message. * @transfer_list: transfers are sequenced through @spi_message.transfers * @tx_sg: Scatterlist for transmit, currently not for client use * @rx_sg: Scatterlist for receive, currently not for client use * * SPI transfers always write the same number of bytes as they read. * Protocol drivers should always provide @rx_buf and/or @tx_buf. * In some cases, they may also want to provide DMA addresses for * the data being transferred; that may reduce overhead, when the * underlying driver uses dma. * * If the transmit buffer is null, zeroes will be shifted out * while filling @rx_buf. If the receive buffer is null, the data * shifted in will be discarded. Only "len" bytes shift out (or in). * It's an error to try to shift out a partial word. (For example, by * shifting out three bytes with word size of sixteen or twenty bits; * the former uses two bytes per word, the latter uses four bytes.) * * In-memory data values are always in native CPU byte order, translated * from the wire byte order (big-endian except with SPI_LSB_FIRST). So * for example when bits_per_word is sixteen, buffers are 2N bytes long * (@len = 2N) and hold N sixteen bit words in CPU byte order. * * When the word size of the SPI transfer is not a power-of-two multiple * of eight bits, those in-memory words include extra bits. In-memory * words are always seen by protocol drivers as right-justified, so the * undefined (rx) or unused (tx) bits are always the most significant bits. * * All SPI transfers start with the relevant chipselect active. Normally * it stays selected until after the last transfer in a message. Drivers * can affect the chipselect signal using cs_change. * * (i) If the transfer isn't the last one in the message, this flag is * used to make the chipselect briefly go inactive in the middle of the * message. Toggling chipselect in this way may be needed to terminate * a chip command, letting a single spi_message perform all of group of * chip transactions together. * * (ii) When the transfer is the last one in the message, the chip may * stay selected until the next transfer. On multi-device SPI busses * with nothing blocking messages going to other devices, this is just * a performance hint; starting a message to another device deselects * this one. But in other cases, this can be used to ensure correctness. * Some devices need protocol transactions to be built from a series of * spi_message submissions, where the content of one message is determined * by the results of previous messages and where the whole transaction * ends when the chipselect goes intactive. * * When SPI can transfer in 1x,2x or 4x. It can get this transfer information * from device through @tx_nbits and @rx_nbits. In Bi-direction, these * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x) * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer. * * The code that submits an spi_message (and its spi_transfers) * to the lower layers is responsible for managing its memory. * Zero-initialize every field you don't set up explicitly, to * insulate against future API updates. After you submit a message * and its transfers, ignore them until its completion callback. */ struct spi_transfer { /* it's ok if tx_buf == rx_buf (right?) * for MicroWire, one buffer must be null * buffers must work with dma_*map_single() calls, unless * spi_message.is_dma_mapped reports a pre-existing mapping */ const void *tx_buf; void *rx_buf; unsigned len; dma_addr_t tx_dma; dma_addr_t rx_dma; struct sg_table tx_sg; struct sg_table rx_sg; unsigned cs_change:1; unsigned tx_nbits:3; unsigned rx_nbits:3; #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */ #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */ #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */ u8 bits_per_word; u16 delay_usecs; u32 speed_hz; u32 dummy; struct list_head transfer_list; };

2.struct spi_message;

/**
 * struct spi_message - one multi-segment SPI transaction
 * @transfers: list of transfer segments in this transaction
 * @spi: SPI device to which the transaction is queued
 * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
 *  addresses for each transfer buffer
 * @complete: called to report transaction completions
 * @context: the argument to complete() when it's called
 * @frame_length: the total number of bytes in the message
 * @actual_length: the total number of bytes that were transferred in all
 *  successful segments
 * @status: zero for success, else negative errno
 * @queue: for use by whichever driver currently owns the message
 * @state: for use by whichever driver currently owns the message
 * @resources: for resource management when the spi message is processed
 *
 * A @spi_message is used to execute an atomic sequence of data transfers,
 * each represented by a struct spi_transfer.  The sequence is "atomic"
 * in the sense that no other spi_message may use that SPI bus until that
 * sequence completes.  On some systems, many such sequences can execute as
 * as single programmed DMA transfer.  On all systems, these messages are
 * queued, and might complete after transactions to other devices.  Messages
 * sent to a given spi_device are always executed in FIFO order.
 *
 * The code that submits an spi_message (and its spi_transfers)
 * to the lower layers is responsible for managing its memory.
 * Zero-initialize every field you don't set up explicitly, to
 * insulate against future API updates.  After you submit a message
 * and its transfers, ignore them until its completion callback.
 */
struct spi_message {
    struct list_head    transfers;

    struct spi_device   *spi;

    unsigned        is_dma_mapped:1;

    /* REVISIT:  we might want a flag affecting the behavior of the
     * last transfer ... allowing things like "read 16 bit length L"
     * immediately followed by "read L bytes".  Basically imposing
     * a specific message scheduling algorithm.
     *
     * Some controller drivers (message-at-a-time queue processing)
     * could provide that as their default scheduling algorithm.  But
     * others (with multi-message pipelines) could need a flag to
     * tell them about such special cases.
     */

    /* completion is reported through a callback */
    void            (*complete)(void *context);
    void            *context;
    unsigned        frame_length;
    unsigned        actual_length;
    int         status;

    /* for optional use by whatever driver currently owns the
     * spi_message ...  between calls to spi_async and then later
     * complete(), that's the spi_master controller driver.
     */
    struct list_head    queue;
    void            *state;

    /* list of spi_res reources when the spi message is processed */
    struct list_head        resources;
};

3.struct spi_device;

/**
 * struct spi_device - Master side proxy for an SPI slave device
 * @dev: Driver model representation of the device.
 * @master: SPI controller used with the device.
 * @max_speed_hz: Maximum clock rate to be used with this chip
 *  (on this board); may be changed by the device's driver.
 *  The spi_transfer.speed_hz can override this for each transfer.
 * @chip_select: Chipselect, distinguishing chips handled by @master.
 * @mode: The spi mode defines how data is clocked out and in.
 *  This may be changed by the device's driver.
 *  The "active low" default for chipselect mode can be overridden
 *  (by specifying SPI_CS_HIGH) as can the "MSB first" default for
 *  each word in a transfer (by specifying SPI_LSB_FIRST).
 * @bits_per_word: Data transfers involve one or more words; word sizes
 *  like eight or 12 bits are common.  In-memory wordsizes are
 *  powers of two bytes (e.g. 20 bit samples use 32 bits).
 *  This may be changed by the device's driver, or left at the
 *  default (0) indicating protocol words are eight bit bytes.
 *  The spi_transfer.bits_per_word can override this for each transfer.
 * @irq: Negative, or the number passed to request_irq() to receive
 *  interrupts from this device.
 * @controller_state: Controller's runtime state
 * @controller_data: Board-specific definitions for controller, such as
 *  FIFO initialization parameters; from board_info.controller_data
 * @modalias: Name of the driver to use with this device, or an alias
 *  for that name.  This appears in the sysfs "modalias" attribute
 *  for driver coldplugging, and in uevents used for hotplugging
 * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
 *  when not using a GPIO line)
 *
 * @statistics: statistics for the spi_device
 *
 * A @spi_device is used to interchange data between an SPI slave
 * (usually a discrete chip) and CPU memory.
 *
 * In @dev, the platform_data is used to hold information about this
 * device that's meaningful to the device's protocol driver, but not
 * to its controller.  One example might be an identifier for a chip
 * variant with slightly different functionality; another might be
 * information about how this particular board wires the chip's pins.
 */
struct spi_device {
    struct device       dev;
    struct spi_master   *master;
    u32         max_speed_hz;
    u8          chip_select;
    u8          bits_per_word;
    u16         mode;
#define SPI_CPHA    0x01            /* clock phase */
#define SPI_CPOL    0x02            /* clock polarity */
#define SPI_MODE_0  (0|0)           /* (original MicroWire) */
#define SPI_MODE_1  (0|SPI_CPHA)
#define SPI_MODE_2  (SPI_CPOL|0)
#define SPI_MODE_3  (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04            /* chipselect active high? */
#define SPI_LSB_FIRST   0x08            /* per-word bits-on-wire */
#define SPI_3WIRE   0x10            /* SI/SO signals shared */
#define SPI_LOOP    0x20            /* loopback mode */
#define SPI_NO_CS   0x40            /* 1 dev/bus, no chipselect */
#define SPI_READY   0x80            /* slave pulls low to pause */
#define SPI_TX_DUAL 0x100           /* transmit with 2 wires */
#define SPI_TX_QUAD 0x200           /* transmit with 4 wires */
#define SPI_RX_DUAL 0x400           /* receive with 2 wires */
#define SPI_RX_QUAD 0x800           /* receive with 4 wires */
    int         irq;
    void            *controller_state;
    void            *controller_data;
    char            modalias[SPI_NAME_SIZE];
    int         cs_gpio;    /* chip select gpio */

    /* the statistics */
    struct spi_statistics   statistics;

    /*
     * likely need more hooks for more protocol options affecting how
     * the controller talks to each chip, like:
     *  - memory packing (12 bit samples into low bits, others zeroed)
     *  - priority
     *  - drop chipselect after each word
     *  - chipselect delays
     *  - ...
     */
};

4. 傳送接收函式:

/**
 * spi_write_then_read - SPI synchronous write followed by read
 * @spi: device with which data will be exchanged
 * @txbuf: data to be written (need not be dma-safe)
 * @n_tx: size of txbuf, in bytes
 * @rxbuf: buffer into which data will be read (need not be dma-safe)
 * @n_rx: size of rxbuf, in bytes
 * Context: can sleep
 *
 * This performs a half duplex MicroWire style transaction with the
 * device, sending txbuf and then reading rxbuf.  The return value
 * is zero for success, else a negative errno status code.
 * This call may only be used from a context that may sleep.
 *
 * Parameters to this routine are always copied using a small buffer;
 * portable code should never use this for more than 32 bytes.
 * Performance-sensitive or bulk transfer code should instead use
 * spi_{async,sync}() calls with dma-safe buffers.
 *
 * Return: zero on success, else a negative error code.
 */
int spi_write_then_read(struct spi_device *spi,
        const void *txbuf, unsigned n_tx,
        void *rxbuf, unsigned n_rx)

5.註冊:

/* 這是個巨集定義,是spi_register_driver() 與 spi_unrigerset_driver()的組合 
#define module_driver(__driver, __register, __unregister, ...) \
static int __init __driver##_init(void) \
{ \
    return __register(&(__driver) , ##__VA_ARGS__); \
} \
module_init(__driver##_init); \
static void __exit __driver##_exit(void) \
{ \
    __unregister(&(__driver) , ##__VA_ARGS__); \
} \
module_exit(__driver##_exit);  
*/

module_spi_driver(dac37j84_spi_driver);

二、在dts中對應的裝置樹節點:

1.管腳對映:

spi0的四根線可以根據板子硬體連線情況對映到不同的管腳上,針對ZYNQMP-zcu102這塊CPU來說,與spi控制器的連線有兩種方式:

<1> 使用PS域的MIO :mio[77:0]中某些引腳的複用功能是spi,但得成組配(裝置樹中pinctrl章節,有專用的格式);
<2> 使用PL,bit檔案中直接將某幾個PL域的引腳連到SPI控制器的輸出上。(我用的是這種方案,這樣就不要進行引腳複用功能設定了,裝置樹中亦可不必指定pinctrl)

引腳複用功能分組見drivers/pinctrl/pinctrl-zynqmp.c ; 裝置樹中與引腳相關的關鍵字解析以及定義見drivers/pinctrl/devicetree.c drivers/pinctrl/pinconf-generic.c;

&pinctrl0 {
    status = "okay";

    pinctrl_i2c1_default: i2c1-default {
        mux {
            groups = "i2c1_4_grp";
            function = "i2c1";
        };

        conf {
            groups = "i2c1_4_grp";
            bias-pull-up;
            slew-rate = <SLEW_RATE_SLOW>;
            io-standard = <IO_STANDARD_LVCMOS18>;
        };
    };

    pinctrl_i2c1_gpio: i2c1-gpio {
        mux {
            groups = "gpio0_16_grp", "gpio0_17_grp";
            function = "gpio0";
        };

        conf {
            groups = "gpio0_16_grp", "gpio0_17_grp";
            slew-rate = <SLEW_RATE_SLOW>;
            io-standard = <IO_STANDARD_LVCMOS18>;
        };
    };

    pinctrl_uart0_default: uart0-default {
        mux {
            groups = "uart0_4_grp";
            function = "uart0";
        };

        conf {
            groups = "uart0_4_grp";
            slew-rate = <SLEW_RATE_SLOW>;
            io-standard = <IO_STANDARD_LVCMOS18>;
        };

        conf-rx {
            pins = "MIO18";
            bias-high-impedance;
        };

        conf-tx {
            pins = "MIO19";
            bias-disable;
        };
    };
    pinctrl_spi0_default: spi0-default {
        mux {
            groups = "spi0_0_grp";//使用第幾組引腳,查pinctrl-zynqmp.c
            function = "spi0";
        };
        conf {
            groups = "spi0_0_grp";//對上面選中的那組管腳做電氣特性設定
            bias-disable;
            slew-rate = <SLEW_RATE_SLOW>;//速率
            io-standard = <IO_STANDARD_LVCMOS18>;//電壓型別
        };
        mux-cs {
            groups = "spi0_0_ss0_grp", "spi0_0_ss1_grp", "spi0_0_ss2_grp";//spi0_cs_x選哪幾個引腳用作spi0的cs
            function = "spi0_ss";
        };
        conf-cs {
            groups = "spi0_0_ss0_grp", "spi0_0_ss1_grp", "spi0_0_ss2_grp";
            bias-disable;
        };
    };
};
amba: amba {
        compatible = "simple-bus";
        u-boot,dm-pre-reloc;
        #address-cells = <2>;
        #size-cells = <2>;
        ranges;
此處省略n行...
    spi0: [email protected] {
            compatible = "cdns,spi-r1p6";
            status = "disabled";
            interrupt-parent = <&gic>;
            interrupts = <0 19 4>;
            reg = <0x0 0xff040000 0x0 0x1000>;
            clock-names = "ref_clk", "pclk";
            #address-cells = <1>;
            #size-cells = <0>;
            num-cs = <1>;
            power-domains = <&pd_spi0>;
        };
此處省略n行...

};      


//繼承自上面
&spi0 {
    status = "okay";
    is-dual = <1>;
    num-cs = <1>;
/* 用PS域引腳時得配複用功能,就得加這兩句
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_spi0_default>; 
*/  
    [email protected]0 {
        compatible = "lmk04828"; /* 32MB */
        #address-cells = <1>;
        #size-cells = <1>;
        reg = <0x0>;
        pl-cs-addr = <0xA0000000>;
        pl-cs-val = <0x00020000>;
        #spi-cpha;
        #spi-cpol;
        spi-max-frequency = <8000000>; /* Based on DC1 spec */      
    };
};

三、例項:


#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/acpi.h>

#include <linux/miscdevice.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <asm/current.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
#include <linux/device.h>
#include <linux/delay.h>


#define MASK_WRITE  0x80
#define MASK_READ   0x80
#define MASK_SEVE   0x60
#define MASK_ADDR_H     0x1F
#define SPI_SPEED_HZ    200000

#define LMK04828_MAGIC  'K'
#define GET_REG     _IOR(LMK04828_MAGIC, 0,int)
#define SET_REG     _IOW(LMK04828_MAGIC, 0, int)

struct lmk04828_t {
    dev_t           devt;
    struct miscdevice   misc_dev;
    spinlock_t      spi_lock;
    struct spi_device   *spi;
    struct list_head    device_entry;

    /* TX/RX buffers are NULL unless this device is open (users > 0) */
    struct mutex        buf_lock;
    unsigned        users;
    u8          *tx_buffer;
    u8          *rx_buffer;
    u32         speed_hz;
    u32         cur_index;  //record the register offset
    void __iomem *      pl_cs_addr;
    u32             pl_cs_val;
};
static struct lmk04828_t *lmk04828;



void lmk04828spi_cs(void)
{
    iowrite32( lmk04828->pl_cs_val, lmk04828->pl_cs_addr);

}

static ssize_t lmk04828spi_sync(struct lmk04828_t *spidev, struct spi_message *message)
{
    DECLARE_COMPLETION_ONSTACK(done);
    int status;
    struct spi_device *spi;

    spin_lock_irq(&spidev->spi_lock);
    spi = spidev->spi;
    spin_unlock_irq(&spidev->spi_lock);
    lmk04828spi_cs();

    if (spi == NULL)
        status = -ESHUTDOWN;
    else
        status = spi_sync(spi, message);

    if (status == 0)
        status = message->actual_length;
    return status;
}

static ssize_t lmk04828spi_sync_write(struct lmk04828_t *spidev, size_t len)
{
    struct spi_transfer t = {
            .tx_buf     = spidev->tx_buffer,
            .len        = len,
            .speed_hz   = spidev->speed_hz,
        };
    struct spi_message  m;

    spi_message_init(&m);
    spi_message_add_tail(&t, &m);
    return lmk04828spi_sync(spidev, &m);
}

static ssize_t lmk04828spi_sync_read(struct lmk04828_t *spidev, size_t len)
{
    struct spi_transfer t = {
            .rx_buf     = spidev->rx_buffer,
            .len        = len,
            .speed_hz   = spidev->speed_hz,
        };
    struct spi_message  m;

    spi_message_init(&m);
    spi_message_add_tail(&t, &m);
    return lmk04828spi_sync(spidev, &m);
}



int lmk04828_write_reg(int reg, unsigned char value)
{
    unsigned char cmd[3]={0};
    unsigned char addr_h = reg >> 8;
    unsigned char addr_l = reg & 0xff;
    cmd[0] = addr_h & MASK_ADDR_H;
    cmd[0] &= ~ MASK_SEVE;
    cmd[0] &= ~ MASK_WRITE;
    cmd[1] = addr_l;
    cmd[2] = value;
    lmk04828->tx_buffer = cmd;
    lmk04828->speed_hz = SPI_SPEED_HZ;

    return lmk04828spi_sync_write(lmk04828, 3);
}
EXPORT_SYMBOL(lmk04828_write_reg);


int lmk04828_read_reg(int reg, unsigned char buff[1])
{
    unsigned char cmd[3]={0};
    unsigned char addr_h = reg >> 8;
    unsigned char addr_l = reg & 0xff;
    cmd[0] = addr_h & MASK_ADDR_H;
    cmd[0] &= ~ MASK_SEVE;
    cmd[0] |=  MASK_READ;
    cmd[1] = addr_l;
    cmd[2] = 0;

    lmk04828->tx_buffer = cmd;
    lmk04828->rx_buffer = buff;
    lmk04828->speed_hz = SPI_SPEED_HZ;

    return spi_write_then_read(lmk04828->spi, cmd,2, buff, 1);



}
EXPORT_SYMBOL(lmk04828_read_reg);



int  lmk04828_open(struct inode *node, struct file *pfile)
{

    return 0;
}

int  lmk04828_release(struct inode *node, struct file *pfile)
{

    return 0;
}


loff_t lmk04828_llseek(struct file *pfile, loff_t off, int len)
{
    lmk04828->cur_index = off;
    return 0;
}

ssize_t lmk04828_read(struct file *pfile, char __user *buf, size_t size, loff_t  *off)
{
    unsigned char kbuf[1]={0};
    mutex_lock(&lmk04828->buf_lock);
    lmk04828_read_reg(lmk04828->cur_index, kbuf);
    mutex_unlock(&lmk04828->buf_lock);
    return copy_to_user(buf, kbuf, 1);

}

ssize_t  lmk04828_write(struct file *pfile, const char __user *buf,
        size_t size, loff_t  *off)
{

    unsigned char kbuf[1]={0};
    int ret=0;
    if ( 0 > copy_from_user(kbuf, buf, 1) ) {
        printk(KERN_INFO "%s %s %d \n","copy to kbuf eer",__func__,__LINE__);
    }
    mutex_lock(&lmk04828->buf_lock);
    ret = lmk04828_write_reg(lmk04828->cur_index,kbuf[0]);
    mutex_unlock(&lmk04828->buf_lock);



    return ret;

}


long  lmk04828_ioctl(struct file *pfile, unsigned int cmd, unsigned long arg)
{
    switch(cmd) {
        case GET_REG:

            break;
        case SET_REG:

            break;
        default:
            printk("invalid argument\n");
            return -EINVAL;
    }

    return 0;
}


int  lmk04828_reg_pll2_n(char enable, unsigned int val)
{
    int ret1,ret2,ret3;
    if (enable == 0) {
        ret1 = lmk04828_write_reg(0x168, val & 0xff);
        ret2 = lmk04828_write_reg(0x167, (val >> 8) & 0xff);
        ret3 = lmk04828_write_reg(0x166, (val >> 16) & 0x03 );

    } else {
        ret1 = lmk04828_write_reg(0x168, val & 0xff);
        ret2 = lmk04828_write_reg(0x167, (val >> 8) & 0xff);
        ret3 = lmk04828_write_reg(0x166, ((val >> 16) & 0x03) | 0x04 );
    }
    if (ret1 >=0 && ret2 >=0 && ret3 >=0) {
        return 0;
    } else {
        return -1;
    }
}


int lmk04828_reg_init(void)
{
    unsigned char regval =0;

    if (0 > lmk04828_write_reg(0, 0x90) ) {
        return -1;
    }
    if (0 > lmk04828_write_reg(0, 0x10) ) {
        return -1;
    }
    //PIN MUX SET
    if (0 > lmk04828_write_reg(0x14A, 0X33)) {
        return -1;
    }

    if (0 > lmk04828_write_reg(0x145, 0x7F)) {
        return -1;
    }
    if (0 > lmk04828_write_reg(0x171, 0xAA)) {
        return -1;
    }
    if (0 > lmk04828_write_reg(0x172, 0x02)) {
        return -1;
    }
    if (0 > lmk04828_write_reg(0x17C, 21)) {
        return -1;
    }
    if (0 > lmk04828_write_reg(0x17D, 51)) {
        return -1;
    }
    if (0 > lmk04828_reg_pll2_n(1,0x1fff)) {
        return -1;
    }



    return 0;
}


static struct file_operations fops = {
    .owner = THIS_MODULE,
    .open = lmk04828_open,
    .release = lmk04828_release,
    .read = lmk04828_read,
    .write = lmk04828_write,
    .llseek = lmk04828_llseek,
    .unlocked_ioctl = lmk04828_ioctl,
};

static int lmk04828_spi_probe(struct spi_device *spi)
{
    struct lmk04828_t   *lmk04828_data;
    struct device_node  *np;
    u32 addrtmp;
    printk("entre prine \n");

    /* Allocate driver data */
    lmk04828_data = kzalloc(sizeof(*lmk04828_data), GFP_KERNEL);
    if (!lmk04828_data)
        return -ENOMEM;

    /* Initialize the driver data */
    lmk04828_data->spi = spi;
    lmk04828_data->speed_hz = SPI_SPEED_HZ;
    spin_lock_init(&lmk04828_data->spi_lock);
    mutex_init(&lmk04828_data->buf_lock);

    INIT_LIST_HEAD(&lmk04828_data->device_entry);


    lmk04828_data->misc_dev.fops = &fops;
    lmk04828_data->misc_dev.name = "clk-lmk04828";
    //主裝置號恆為10,自動分配次裝置號
    lmk04828_data->misc_dev.minor = MISC_DYNAMIC_MINOR;
    //3.註冊misc裝置
    misc_register(&lmk04828_data->misc_dev);

    np = of_find_node_by_name(NULL, "lmk04828");
    if (NULL == np) {
        printk("node lmk04828 not find \n");
        return -1;
    }
    if(0 > of_property_read_u32_index(np, "pl-cs-addr" , 0, &addrtmp) ) {
        printk("pl-cs-addr  property not find \n");
    }
    if(0 > of_property_read_u32_index(np, "pl-cs-val" , 0, &lmk04828_data->pl_cs_val)) {
        printk("pl-cs-val  property not find \n");
    }
    lmk04828_data->pl_cs_addr = ioremap(addrtmp, 4);
    printk("val= %x, addrtmp = %x, ioremap-address= %x \n", lmk04828_data->pl_cs_val,
                        addrtmp, lmk04828_data->pl_cs_addr);


    iowrite32( lmk04828_data->pl_cs_val, lmk04828_data->pl_cs_addr);

    lmk04828 = lmk04828_data;
    spi_set_drvdata(spi, lmk04828_data);

    //LMK04828 REGISTER INIT
    lmk04828_reg_init();


    return 0;
}

static int lmk04828_spi_remove(struct spi_device *spi)
{
    struct lmk04828_t *lmk04828_data = spi_get_drvdata(spi);
    //登出misc裝置
    misc_deregister(&lmk04828_data->misc_dev);
    //釋放
    kfree(lmk04828_data);
    return 0;
}

static const struct of_device_id lmk04828_dt_ids[] = {
    { .compatible = "lmk04828" },
    {},
};


static const struct spi_device_id lmk04828_spi_id[] = {
    {"lmk04828"},
    {}
};
MODULE_DEVICE_TABLE(spi, lmk04828_spi_id);

static struct spi_driver lmk04828_spi_driver = {
    .driver = {
        .name   = "lmk04828",
        .owner = THIS_MODULE,
        .of_match_table = of_match_ptr(lmk04828_dt_ids),
    },
    .probe      = lmk04828_spi_probe,
    .remove     = lmk04828_spi_remove,
    .id_table   = lmk04828_spi_id,
};

module_spi_driver(lmk04828_spi_driver);

MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:04828");


相關推薦

SPI裝置驅動編寫----基於linux4.9 driver核心層

【前序】 linux下寫驅動是站在巨人的肩膀上做開發,不用完全從頭做起,甚至你不需要懂SPI時序,照樣能寫出可用的驅動,原因是:控制器驅動一般晶片商早已寫好(linux4.9中針對xilinx zynqmp系列cpu是 drivers/spi/spi-cade

Linux下SPI和IIC驅動免在裝置樹上新增裝置資訊的編寫方法

      編寫i2c或spi驅動時,一般需要往裝置樹上(或者板級檔案)新增節點資訊,這裡提供一種直接在驅動中新增裝置資訊的方法,使驅動更方便移植。 i2c的驅動模板如下 #include <linux/module.h> #include <linux

基於樹莓派Raspberry: 字元裝置核心驅動程式框架編寫

        之前寫了一篇移植2.4寸TFT驅動到樹莓派的文章,那篇博文中的驅動程式碼是國外大牛寫的,看了一下,還是有很多地方沒理解,是得好好再學習一下核心驅動的編寫,這裡就從字元裝置驅動開始,採用最簡單的LED驅動來建立核心驅動移植的驅動框架.        個人原創,

i.mx6ul linux驅動開發—基於Device tree機制的驅動編寫

前言 Device Tree是一種用來描述硬體的資料結構,類似板級描述語言,起源於OpenFirmware(OF)。在目前廣泛使用的Linux kernel 2.6.x版本中,對於不同平臺、不同硬體,往往存在著大量的不同的、移植性差的板級描述程式碼,以達到對這些不同平臺和不同硬體特殊適配的需求

x4412 linux4.9.123的lcd驅動移植

本文分享一下如何移植x4412的lcd驅動程式。x4412預設使用的液晶屏型號VS070CXN,解析度: 1024X600。根據4412手冊, LCD 介面支援三種介面, RGB-interface indirect-i80 interface and YUV interfa

Linux I2C裝置驅動編寫(一)

在Linux驅動中I2C系統中主要包含以下幾個成員: I2C adapter 即I2C介面卡 I2C driver 某個I2C裝置的裝置驅動,可以以driver理解。 I2C client 某個I2C裝置的裝置宣告,可以以device理解。 I2C adapter 是

Linux系統I2C裝置驅動編寫方法

硬體平臺:飛思卡爾IMX6 核心版本:kernel3.0.35 Linux的I2C子系統分為三層,I2C核心層,I2C匯流排驅動層和I2C裝置驅動層。I2C核心層由核心開發者提供,I2C匯流排驅動層有晶片廠商提供,而I2C裝置驅動層由於裝置的差異性,就只能是具體的開發需求

利用Warensoft Stock Service編寫高頻交易軟體--客戶驅動介面說明

Warensoft Stock Service Api客戶端介面說明 Warensoft Stock Service Api Client Reference       本專案客戶端驅動原始碼已經發布到GitHub上,地址如下:       https://github.com/warensoft/s

第一課:裝置樹的引入與體驗(基於linux4.19核心版本)

本套視訊面向如下三類學員: 有Linux驅動開發基礎的人, 可以挑感興趣的章節觀看; 沒有Linux驅動開發基礎但是願意學習的人,請按順序全部觀看,我會以比較簡單的LED驅動為例講解; 完全沒有Linux驅動知識,又不想深入學習的人, 比如應用開發人員,不得

65 linux spi裝置驅動spi LCD屏驅動

SPI的控制器驅動由平臺裝置與平臺驅動來實現. 驅動後用spi_master物件來描述.在裝置驅動中就可以通過函式spi_write, spi_read, spi_w8r16, spi_w8r8等函式來呼叫控制器. "include/linux/spi/s

68 linux framebuffer裝置驅動spi lcd屏驅動

前面驅動的spi lcd僅僅是刷了一下圖而已, 如果要讓QT圖形程式在此lcd上顯示的話,還需要實現標準的framebuffer裝置驅動才可以. 實現一個fb裝置驅動好, QT程式就可以在視訊記憶體裡顯示出來。 只需要在裝置驅動把視訊記憶體的資料通過spi控制

基於Device tree機制的驅動編寫

前言 Device Tree是一種用來描述硬體的資料結構,類似板級描述語言,起源於OpenFirmware(OF)。在目前廣泛使用的Linux kernel 2.6.x版本中,對於不同平臺、不同硬體,往往存在著大量的不同的、移植性差的板級描述程式碼,以達到對這些不同平臺和不同硬體特殊適配的需求。但是

linux spi裝置驅動中probe函式何時被呼叫

這兩天被裝置檔案快搞瘋了,也怪自己學東西一知半解吧,弄了幾天總算能把設備註冊理清楚一點點了。就以spi子裝置的註冊為例總結一下,免得自己忘記。 首先以註冊一個spidev的裝置為例: static struct spi_board_info imx5_spi_printe

i2c 與 spi 裝置在新版核心中不採用DTS裝置樹形式 在驅動新增裝置資訊(board_info)的方法

本文唯一地址:http://blog.csdn.net/dearsq/article/details/51953610 歡迎轉載,轉載請著名,謝謝~ /* 廢話:在展訊平臺移植 spi 裝置的時候發現完成 dts 和 driver中的 of_match_

第一課:linux裝置樹的引入與體驗(基於linux4.19核心版本)

轉載請註明原文地址:http://wiki.100ask.org/Linux_devicetree 本套視訊面向如下三類學員: 有Linux驅動開發基礎的人, 可以挑感興趣的章節觀看; 沒有Linux驅動開發基礎但是願意學習的人,請按順序全部觀看,我會

【 專欄 】- 手把手教你從零實現Linux裝置驅動程式(基於友善之臂4412開發板)

手把手教你從零實現Linux裝置驅動程式(基於友善之臂4412開發板) ARM-tiny4412這款CPU是基於ARMv7架構的晶片,目前在網上開發現成資源較少,為了彌補這一缺陷,本人決定將我所學所用的這塊晶片的開發技巧和方法共享

字元裝置驅動編寫流程以及大概框架

Linux裝置驅動: Linux裝置驅動分為以下三類: (1)字元裝置:鍵盤,印表機 (2)塊裝置:硬碟,NAND (3)網路裝置:網絡卡 對於字元裝置是最基本,最常見的裝置: 對字元裝置的驅動主要完成以下動作: 1、定義一個結構體static struct file_o

基於stm32f429的uclinux-W5500網路裝置核心驅動

       之前那篇寫w5500驅動只是單純的應用程式驅動,雖然可以實現一定的目的,但是沒有充分利用到linux的核心,在一些應用場合就顯得不合時宜,於是就進行w5500網路裝置核心驅動的學習,幸運的是w5500網路裝置驅動的檔案是在4.8版本的linux核心

Linux驅動編寫(塊裝置驅動程式碼)

【 宣告:版權所有,歡迎轉載,請勿用於商業用途。  聯絡信箱:feixiaoxing @163.com】    按照ldd的說法,linux的裝置驅動包括了char,block,net三種裝置。char裝置是比較簡單的,只要分配了major、minor號,就可以進行讀寫處理了

嵌入式Linux驅動初探 虛擬串列埠裝置驅動編寫

文章目錄 1.說明 所謂虛擬串列埠裝置意為這個串列埠是虛擬的,不能用來實現與下位機的串列埠收發。但是他可以將從使用者那兒收到的資料,原封不動的回傳給使用者。相當於一個迴環。 這一功能的實現主要是在驅動中實現一個FIFO。驅動接收到使用者資料後,先將之放入FIFO