1. 程式人生 > >計算點雲的最小BBOX

計算點雲的最小BBOX

參考1
參考2

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/filters/project_inliers.h>
#include <string>
#include <Eigen/Core>
#include <boost/thread/thread.hpp>
#include <pcl/features/normal_3d_omp.
h> #include <pcl/common/transforms.h> using namespace std; int main (int argc, char** argv) { pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGBNormal>); string fileName("test.pcd"); pcl::io::loadPCDFile(fileName,*cloud); pcl::visualization
::PCLVisualizer viewer; pcl::NormalEstimationOMP<pcl::PointXYZRGBNormal,pcl::PointXYZRGBNormal> nor; pcl::search::KdTree<pcl::PointXYZRGBNormal>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZRGBNormal>); nor.setSearchMethod(tree); nor.setInputCloud(cloud); nor.
setNumberOfThreads(10); nor.setRadiusSearch(0.03); nor.compute(*cloud); size_t cloud_size = cloud->size(); for (size_t i = 0;i<cloud_size;++i) { uint8_t r = (cloud->at(i).normal_x + 1)/2 * 255; uint8_t g = (cloud->at(i).normal_y + 1)/2 * 255; uint8_t b = (cloud->at(i).normal_z + 1)/2 * 255; uint32_t rgb = ((uint32_t)r << 16 | (uint32_t)g << 8 | (uint32_t)b); cloud->at(i).rgb = *reinterpret_cast<float*>(&rgb); } Eigen::Vector4f pcaCentroid; pcl::compute3DCentroid(*cloud,pcaCentroid); Eigen::Matrix3f covariance; pcl::computeCovarianceMatrixNormalized(*cloud,pcaCentroid,covariance); Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance,Eigen::ComputeEigenvectors); Eigen::Matrix3f eigenVectorsPCA = eigen_solver.eigenvectors(); eigenVectorsPCA.col(2) = eigenVectorsPCA.col(0).cross(eigenVectorsPCA.col(1)); // Transform the original cloud to the origin where the principal components correspond to the axes. Eigen::Matrix4f transform(Eigen::Matrix4f::Identity()); transform.block<3,3>(0,0) = eigenVectorsPCA.transpose(); transform.block<3,1>(0,3) = -1.f * (transform.block<3,3>(0,0) * pcaCentroid.head<3>()); pcl::PointCloud<pcl::PointXYZRGBNormal>::Ptr transformedCloud(new pcl::PointCloud<pcl::PointXYZRGBNormal>); pcl::transformPointCloudWithNormals(*cloud,*transformedCloud,transform); pcl::PointXYZRGBNormal minPoint,maxPoint; pcl::getMinMax3D(*transformedCloud,minPoint,maxPoint); const Eigen::Vector3f meanDiagonal = 0.5f*(maxPoint.getVector3fMap() + minPoint.getVector3fMap()); const Eigen::Quaternionf bboxQuaternion(eigenVectorsPCA); //Quaternions are a way to do rotations https://www.youtube.com/watch?v=mHVwd8gYLnI const Eigen::Vector3f bboxTransform = eigenVectorsPCA * meanDiagonal + pcaCentroid.head<3>(); viewer.addPointCloud<pcl::PointXYZRGBNormal>(cloud); viewer.addCube(bboxTransform, bboxQuaternion, maxPoint.x - minPoint.x, maxPoint.y - minPoint.y, maxPoint.z - minPoint.z, "bbox"); viewer.setShapeRenderingProperties(pcl::visualization::PCL_VISUALIZER_REPRESENTATION,pcl::visualization::PCL_VISUALIZER_REPRESENTATION_WIREFRAME,"bbox"); while(!viewer.wasStopped()) { viewer.spinOnce(100); boost::this_thread::sleep (boost::posix_time::microseconds (100000)); } return (0); }