1. 程式人生 > >影象處理中專案程式碼合集,包括特徵提取-影象分割-分類-匹配-降噪等等

影象處理中專案程式碼合集,包括特徵提取-影象分割-分類-匹配-降噪等等

       這幾天在研究血管增強與分割,發現一個比較全面的影象處理方面的專案集合,裡面涵蓋了特徵提取、影象分割、影象分類、影象匹配、影象降噪,光流法等等方面的專案和程式碼集合,專案是2012年之前的,但是涵蓋比較基礎的原理知識,用到的時候可以參考一下:

Topic

Resources

References

Feature Extraction

  • PCA-SIFT [2] [Project]

  • Affine-SIFT [3] [Project]

  • Affine Covariant Features [5] [Oxford project]

  • Geometric Blur [7] [

    Code]

  • Local Self-Similarity Descriptor [8] [Oxford implementation]

  • Global and Efficient Self-Similarity [9] [Code]

  • Shape Context [12] [Project]

  • Color Descriptor [13] [Project]

  • Pyramids of Histograms of Oriented Gradients [Code]

  • Space-Time Interest Points (STIP) [14] [Code]

  • Boundary Preserving Dense Local Regions [15][

    Project]

  1. D. Lowe. Distinctive Image Features from Scale-Invariant Keypoints, IJCV 2004. [PDF]
  2. Y. Ke and R. Sukthankar, PCA-SIFT: A More Distinctive Representation for Local Image Descriptors,CVPR, 2004. [PDF]
  3. J.M. Morel and G.Yu, ASIFT, A new framework for fully affine invariant image comparisonSIAM Journal on Imaging Sciences
    , 2009. [PDF]
  4. H. Bay, T. Tuytelaars and L. V. Gool SURF: Speeded Up Robust FeaturesECCV, 2006. [PDF]
  5. K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir and L. Van Gool, A comparison of affine region detectorsIJCV, 2005. [PDF]
  6. J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal regionsBMVC, 2002. [PDF]
  7. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondences. CVPR, 2005. [PDF]
  8. E. Shechtman and M. Irani. Matching local self-similarities across images and videos, CVPR, 2007. [PDF]
  9. T. Deselaers and V. Ferrari. Global and Efficient Self-Similarity for Object Classification and DetectionCVPR 2010. [PDF]
  10. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.CVPR 2005. [PDF]
  11. A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelopeIJCV, 2001. [PDF]
  12. S. Belongie, J. Malik and J. Puzicha. Shape matching and object recognition using shape contextsPAMI, 2002. [PDF]
  13. K. E. A. van de Sande, T. Gevers and Cees G. M. Snoek, Evaluating Color Descriptors for Object and Scene RecognitionPAMI, 2010.
  14. I. Laptev, On Space-Time Interest Points, IJCV, 2005. [PDF]
  15. J. Kim and K. Grauman, Boundary Preserving Dense Local RegionsCVPR 2011. [PDF]

Image Segmentation

  1. J. Shi and J Malik, Normalized Cuts and Image SegmentationPAMI, 2000 [PDF]
  2. X. Ren and J. Malik. Learning a classification model for segmentationICCV, 2003. [PDF]
  3. P. Felzenszwalb and D. Huttenlocher. Efficient Graph-Based Image Segmentation,IJCV 2004. [PDF]
  4. D. Comaniciu, P Meer. Mean Shift: A Robust Approach Toward Feature Space AnalysisPAMI 2002. [PDF]
  5. P. Arbelaez, M. Maire, C. Fowlkes and J. Malik. Contour Detection and Hierarchical Image SegmentationPAMI, 2011. [PDF]
  6. A. Levinshtein, A. Stere, K. N. Kutulakos, D. J. Fleet, S. J. Dickinson, and K. Siddiqi, TurboPixels: Fast Superpixels Using Geometric FlowsPAMI 2009. [PDF]
  7. A. Vedaldi and S. Soatto, Quick Shift and Kernel Methodsfor Mode SeekingECCV, 2008. [PDF]
  8. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, SLIC Superpixels, EPFL Technical Report, 2010. [PDF]
  9. A. Y. Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data CompressionCVIU, 2007. [PDF]
  10. S. Maji, N. Vishnoi and J. Malik, Biased Normalized CutCVPR 2011
  11. E. Akbas and N. Ahuja, “From ramp discontinuities to segmentation tree,”  ACCV 2009. [PDF]
  12. N. Ahuja, “A Transform for Multiscale Image Segmentation by Integrated Edge and Region Detection,” PAMI 1996 [PDF]
  13. M.-Y. Liu, O. Tuzel, S. Ramalingam, and R. Chellappa, Entropy Rate Superpixel Segmentation, CVPR 2011 [PDF]

Object Detection

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones's Face Detection [6] [Project]
  1. N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection.CVPR 2005. [PDF]
  2. P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
    Object Detection with Discriminatively Trained Part Based ModelsPAMI, 2010 [PDF]
  3. P. Felzenszwalb, R. Girshick, D. McAllester. Cascade Object Detection with Deformable Part ModelsCVPR 2010 [PDF]
  4. L. Bourdev, J. Malik, Poselets: Body Part Detectors Trained Using 3D Human Pose AnnotationsICCV 2009 [PDF]
  5. B. Leibe, A. Leonardis, B. Schiele. Robust Object Detection with Interleaved Categorization and SegmentationIJCV, 2008. [PDF]
  6. P. Viola and M. Jones, Rapid Object Detection Using a Boosted Cascade of Simple FeaturesCVPR 2001. [PDF]

Saliency Detection

  • Itti, Koch, and Niebur' saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]
  1. L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysisPAMI, 1998. [PDF]
  2. R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk. Frequency-tuned salient region detection. In CVPR, 2009. [PDF]
  3. R. Achanta and S. Susstrunk. Saliency detection using maximum symmetric surround. In ICIP, 2010. [PDF]
  4. N. Bruce and J. Tsotsos. Saliency based on information maximization. In NIPS, 2005. [PDF]
  5. S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. InCVPR, 2010. [PDF]
  6. J. Harel, C. Koch, and P. Perona. Graph-based visual saliency. NIPS, 2007. [PDF]
  7. X. Hou and L. Zhang. Saliency detection: A spectral residual approachCVPR, 2007. [PDF]
  8. E. Rahtu, J. Kannala, M. Salo, and J. Heikkila. Segmenting salient objects from images and videosCVPR, 2010. [PDF]
  9. L. Zhang, M. Tong, T. Marks, H. Shan, and G. Cottrell. Sun: A bayesian framework for saliency using natural statisticsJournal of Vision, 2008. [PDF]
  10. D. Gao and N. Vasconcelos, Discriminant Saliency for Visual Recognition from Cluttered ScenesNIPS, 2004. [PDF]
  11. T. Judd and K. Ehinger and F. Durand and A. Torralba, Learning to Predict Where Humans LookICCV, 2009. [PDF]
  12. M.-M. Cheng, G.-X. Zhang, N. J. Mitra, X. Huang, S.-M. Hu. Global Contrast based Salient Region DetectionCVPR 2011.

Image Classification

  • Pyramid Match [1] [Project]

  • Spatial Pyramid Matching [2] [Code]

  • Locality-constrained Linear Coding [3] [Project] [Matlab code]

  • Texture Classification [5] [Project]

  • Multiple Kernels for Image Classification [6] [Project]

  • Feature Combination [7] [Project]

  • SuperParsing [Code]
  1. K. Grauman and T. Darrell, The Pyramid Match Kernel: Discriminative Classification with Sets of Image FeaturesICCV 2005. [PDF]
  2. S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene CategoriesCVPR 2006 [PDF]
  3. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-constrained Linear Coding for Image ClassificationCVPR, 2010 [PDF]
  4. J. Yang, K. Yu, Y. Gong, T. Huang, Linear Spatial Pyramid Matching using Sparse Coding for Image ClassificationCVPR, 2009 [PDF]
  5. M. Varma and A. Zisserman, A statistical approach to texture classification from single images, IJCV2005. [PDF]
  6. A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, Multiple Kernels for Object DetectionICCV, 2009. [PDF]
  7. P. Gehler and S. Nowozin, On Feature Combination for Multiclass Object Detection, ICCV, 2009. [PDF]
  8. J. Tighe and S. Lazebnik, SuperParsing: Scalable Nonparametric Image
    Parsing with Superpixels
    , ECCV 2010. [PDF]

Category-Independent Object Proposal

  • Objectness measure [1] [Code]

  • Parametric min-cut [2] [Project]

  • Object proposal [3] [Project]

  1. B. Alexe, T. Deselaers, V. Ferrari, What is an Object?CVPR 2010 [PDF]
  2. J. Carreira and C. Sminchisescu. Constrained Parametric Min-Cuts for Automatic Object SegmentationCVPR 2010. [PDF]
  3. I. Endres and D. Hoiem. Category Independent Object Proposals, ECCV 2010. [PDF]

MRF

  1. Y. Boykov, O. Veksler and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001 [PDF]

Shadow Detection

  • Shadow Detection using Paired Region [Project]

  • Ground shadow detection [Project]

  1. R. Guo, Q. Dai and D. Hoiem, Single-Image Shadow Detection and Removal using Paired Regions, CVPR 2011 [PDF]
  2. J.-F. Lalonde, A. A. Efros, S. G. Narasimhan, Detecting Ground Shadowsin Outdoor Consumer PhotographsECCV 2010 [PDF]

Optical Flow

  1. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  2. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  3. C. Liu. Beyond Pixels: Exploring New Representations and Applications for Motion Analysis. Doctoral ThesisMIT 2009. [PDF]
  4. B.K.P. Horn and B.G. Schunck, Determining Optical FlowArtificial Intelligence1981. [PDF]
  5. M. J. Black and P. Anandan, A framework for the robust estimation of optical flow, ICCV 93. [PDF]
  6. D. Sun, S. Roth, and M. J. Black, Secrets of optical flow estimation and their principlesCVPR 2010. [PDF]
  7. T. Brox, J. Malik, Large displacement optical flow: descriptor matching in variational motion estimationPAMI, 2010 [PDF]
  8. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based on a theory for warpingECCV 2004 [PDF]

Object Tracking

  • Particle filter object tracking [1] [Project]

  • KLT Tracker [2-3] [Project]

  • MILTrack [4] [Code]

  • Incremental Learning for Robust Visual Tracking [5] [Project]

  • Online Boosting Trackers [6-7] [Project]

  • L1 Tracking [8] [Matlab code]

  1. P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking ECCV, 2002. [PDF]
  2. B.D. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo VisionIJCAI 1981. [PDF]
  3. J. Shi, C. Tomasi, Good Feature to TrackCVPR 1994. [PDF]
  4. B. Babenko, M. H. Yang, S. Belongie, Robust Object Tracking with Online Multiple Instance LearningPAMI 2011 [PDF]
  5. D. Ross, J. Lim, R.-S. Lin, M.-H. Yang, Incremental Learning for Robust Visual TrackingIJCV 2007 [PDF]
  6. H. Grabner, and H. Bischof, On-line Boosting and Vision, CVPR 2006 [PDF]
  7. H. Grabner, C. Leistner, and H. Bischof, Semi-supervised On-line Boosting for Robust TrackingECCV 2008 [PDF]
  8. X. Mei and H. Ling, Robust Visual Tracking using L1 Minimization, ICCV, 2009. [PDF]

Image Matting

  • Closed Form Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]

  1. A. Levin D. Lischinski and Y. WeissA Closed Form Solution to Natural Image MattingPAMI 2008 [PDF]
  2. A. Levin, A. Rav-Acha, D. Lischinski. Spectral MattingPAMI 2008. [PDF]
  3. Y. Zheng and C. Kambhamettu, Learning Based Digital MattingICCV 2009 [PDF]

Bilateral Filtering

  • Fast Bilateral Filter [Project]

  • Real-time O(1) Bilateral Filtering [Code]

  • SVM for Edge-Preserving Filtering [Code]

  1. Q. Yang, K.-H. Tan and N. Ahuja,  Real-time O(1) Bilateral Filtering
    CVPR 2009. [PDF]
  2. Q. Yang, S. Wang, and N. Ahuja, SVM for Edge-Preserving Filtering
    CVPR 2010. [PDF]

Image Denoising

Image Super-Resolution

  • MRF for image super-resolution [Project]

  • Multi-frame image super-resolution [Project]

  • UCSC Super-resolution [Project]

  • Sprarse coding super-resolution [Code]

Image Deblurring

  • Eficient Marginal Likelihood Optimization in Blind Deconvolution [Code]

  • Analyzing spatially varying blur [Project]

  • Radon Transform [Code]

Image Quality Assessment

  1. L. Zhang, L. Zhang, X. Mou and D. Zhang, FSIM: A Feature Similarity Index for Image Quality AssessmentTIP 2011. [PDF]
  2. N. Damera-Venkata, and T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik,Image Quality Assessment Based on a Degradation ModelTIP 2000. [PDF]
  3. Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, TIP 2004. [PDF]
  4. B. Ghanem, E. Resendiz, and N. Ahuja, Segmentation-Based Perceptual Image Quality Assessment (SPIQA)ICIP 2008. [PDF]

Density Estimation

  • Kernel Density Estimation Toolbox [Project]

Dimension Reduction

  • Dimensionality Reduction Toolbox [Project]

  • ISOMAP [Code]

  • Laplacian Eigenmaps [Code]

  • Diffusion maps [Code]

Sparse Coding

Low-Rank Matrix Completion

Nearest Neighbors matching

Steoreo

  1. D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo correspondence algorithmsIJCV 2002 [PDF]

Structure from motion

  1. N. Snavely, S. M. Seitz, R. Szeliski. Photo Tourism: Exploring image collections in 3DSIGGRAPH, 2006. [PDF]

Distance Transformation

  • Distance Transforms of Sampled Functions [1] [Project]
  1. P. F. Felzenszwalb and D. P. Huttenlocher. Distance transforms of sampled functionsTechnical report, Cornell University, 2004. [PDF]

Chamfer Matching

  • Fast Directional Chamfer Matching [Code]
  1. M.-Y. Liu, O. Tuzel, A. Veeraraghavan, and R. Chellappa, Fast Directional Chamfer MatchingCVPR 2010 [PDF]

Classification

Regression

  • SVM

  • RVM

  • GPR

Multiple Kernel Learning (MKL)

  1. S. Sonnenburg, G. R?tsch, C. Sch?fer, B. Sch?lkopf . Large scale multiple kernel learningJMLR, 2006. [PDF]
  2. F. Orabona and L. Jie. Ultra-fast optimization algorithm for sparse multi kernel learning. ICML, 2011. [PDF]
  3. F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learningCVPR, 2010. [PDF]
  4. A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimplemklJMRL, 2008. [PDF]

Multiple Instance Learning (MIL)

  1. C. Leistner, A. Saffari, and H. Bischof, MIForests: Multiple-Instance Learning with Randomized TreesECCV 2010. [PDF]
  2. Z. Fu, A. Robles-Kelly, and J. Zhou, MILIS: Multiple instance learning with instance selectionPAMI 2010. [PDF]
  3. Y. Chen, J. Bi and J. Z. Wang, MILES: Multiple-Instance Learning via Embedded Instance SelectionPAMI 2006 [PDF]
  4. Yixin Chen and James Z. Wang, Image Categorization by Learning and Reasoning with RegionsJMLR 2004. [PDF]

Other Utilities

  • Code for downloading Flickr images, by James Hays [Code]

  • The Lightspeed Matlab Toolbox by Tom Minka [Code]

  • MATLAB Functions for Multiple View Geometry [Code]

  • Peter's Functions for Computer Vision [Code]

  • Statistical Pattern Recognition Toolbox [Code]

Useful Links (dataset, lectures, and other softwares)


一、特徵提取Feature Extraction:

  • PCA-SIFT [2] [Project]

  • Affine-SIFT [3] [Project]

  • Affine Covariant Features [5] [Oxford project]

  • Geometric Blur [7] [Code]

  • Local Self-Similarity Descriptor [8] [Oxford implementation]

  • Global and Efficient Self-Similarity [9] [Code]

  • Shape Context [12] [Project]

  • Color Descriptor [13] [Project]

  • Pyramids of Histograms of Oriented Gradients [Code]

  • Space-Time Interest Points (STIP) [14][Project] [Code]

  • Boundary Preserving Dense Local Regions [15][Project]

  • Weighted Histogram[Code]

  • Histogram-based Interest Points Detectors[Paper][Code]

  • An OpenCV - C++ implementation of Local Self Similarity Descriptors [Project]

  • Fast Sparse Representation with Prototypes[Project]

  • Corner Detection [Project]

  • AGAST Corner Detector: faster than FAST and even FAST-ER[Project]

  • Real-time Facial Feature Detection using Conditional Regression Forests[Project]

  • Global and Efficient Self-Similarity for Object Classification and Detection[code]

  • WαSH: Weighted α-Shapes for Local Feature Detection[Project]

  • Online Selection of Discriminative Tracking Features[Project]


二、影象分割Image Segmentation:

  • Normalized Cut [1] [Matlab code]

  • Gerg Mori’ Superpixel code [2] [Matlab code]

  • Efficient Graph-based Image Segmentation [3] [C++ code] [Matlab wrapper]

  • OWT-UCM Hierarchical Segmentation [5] [Resources]

  • Quick-Shift [7] [VLFeat]

  • SLIC Superpixels [8] [Project]

  • Segmentation by Minimum Code Length [9] [Project]

  • Biased Normalized Cut [10] [Project]

  • Segmentation Tree [11-12] [Project]

  • Entropy Rate Superpixel Segmentation [13] [Code]

  • Fast Approximate Energy Minimization via Graph Cuts[Paper][Code]

  • Efficient Planar Graph Cuts with Applications in Computer Vision[Paper][Code]

  • Isoperimetric Graph Partitioning for Image Segmentation[Paper][Code]

  • Random Walks for Image Segmentation[Paper][Code]

  • Blossom V: A new implementation of a minimum cost perfect matching algorithm[Code]

  • An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Computer Vision[Paper][Code]

  • Geodesic Star Convexity for Interactive Image Segmentation[Project]

  • Contour Detection and Image Segmentation Resources[Project][Code]

  • Biased Normalized Cuts[Project]

  • Max-flow/min-cut[Project]

  • Chan-Vese Segmentation using Level Set[Project]

  • A Toolbox of Level Set Methods[Project]

  • Re-initialization Free Level Set Evolution via Reaction Diffusion[Project]

  • Improved C-V active contour model[Paper][Code]

  • A Variational Multiphase Level Set Approach to Simultaneous Segmentation and Bias Correction[Paper][Code]

  • Level Set Method Research by Chunming Li[Project]

  • ClassCut for Unsupervised Class Segmentation[code]

  • SEEDS: Superpixels Extracted via Energy-Driven Sampling [Project][other]


三、目標檢測Object Detection:

  • A simple object detector with boosting [Project]

  • INRIA Object Detection and Localization Toolkit [1] [Project]

  • Discriminatively Trained Deformable Part Models [2] [Project]

  • Cascade Object Detection with Deformable Part Models [3] [Project]

  • Poselet [4] [Project]

  • Implicit Shape Model [5] [Project]

  • Viola and Jones’s Face Detection [6] [Project]

  • Bayesian Modelling of Dyanmic Scenes for Object Detection[Paper][Code]

  • Hand detection using multiple proposals[Project]

  • Color Constancy, Intrinsic Images, and Shape Estimation[Paper][Code]

  • Discriminatively trained deformable part models[Project]

  • Gradient Response Maps for Real-Time Detection of Texture-Less Objects: LineMOD [Project]

  • Image Processing On Line[Project]

  • Robust Optical Flow Estimation[Project]

  • Where's Waldo: Matching People in Images of Crowds[Project]

  • Scalable Multi-class Object Detection[Project]

  • Class-Specific Hough Forests for Object Detection[Project]

  • Deformed Lattice Detection In Real-World Images[Project]

  • Discriminatively trained deformable part models[Project]


四、顯著性檢測Saliency Detection:

  • Itti, Koch, and Niebur’ saliency detection [1] [Matlab code]

  • Frequency-tuned salient region detection [2] [Project]

  • Saliency detection using maximum symmetric surround [3] [Project]

  • Attention via Information Maximization [4] [Matlab code]

  • Context-aware saliency detection [5] [Matlab code]

  • Graph-based visual saliency [6] [Matlab code]

  • Saliency detection: A spectral residual approach. [7] [Matlab code]

  • Segmenting salient objects from images and videos. [8] [Matlab code]

  • Saliency Using Natural statistics. [9] [Matlab code]

  • Discriminant Saliency for Visual Recognition from Cluttered Scenes. [10] [Code]

  • Learning to Predict Where Humans Look [11] [Project]

  • Global Contrast based Salient Region Detection [12] [Project]

  • Bayesian Saliency via Low and Mid Level Cues[Project]

  • Top-Down Visual Saliency via Joint CRF and Dictionary Learning[Paper][Code]

  • Saliency Detection: A Spectral Residual Approach[Code]


五、影象分類、聚類Image Classification, Clustering

  • Pyramid Match [1] [Project]

  • Spatial Pyramid Matching [2] [Code]

  • Locality-constrained Linear Coding [3] [Project] [Matlab code]

  • Texture Classification [5] [Project]

  • Multiple Kernels for Image Classification [6] [Project]

  • Feature Combination [7] [Project]

  • SuperParsing [Code]

  • Large Scale Correlation Clustering Optimization[Matlab code]

  • Detecting and Sketching the Common[Project]

  • Self-Tuning Spectral Clustering[Project][Code]

  • User Assisted Separation of Reflections from a Single Image Using a Sparsity Prior[Paper][Code]

  • Filters for Texture Classification[Project]

  • Multiple Kernel Learning for Image Classification[Project]

  • SLIC Superpixels[Project]


六、摳圖Image Matting

  • A Closed Form Solution to Natural Image Matting [Code]

  • Spectral Matting [Project]

  • Learning-based Matting [Code]


七、目標跟蹤Object Tracking:

  • A Forest of Sensors - Tracking Adaptive Background Mixture Models [Project]

  • Object Tracking via Partial Least Squares Analysis[Paper][Code]

  • Robust Object Tracking with Online Multiple Instance Learning[Paper][Code]

  • Online Visual Tracking with Histograms and Articulating Blocks[Project]

  • Incremental Learning for Robust Visual Tracking[Project]

  • Real-time Compressive Tracking[Project]

  • Robust Object Tracking via Sparsity-based Collaborative Model[Project]

  • Visual Tracking via Adaptive Structural Local Sparse Appearance Model[Project]

  • Online Discriminative Object Tracking with Local Sparse Representation[Paper][Code]

  • Superpixel Tracking[Project]

  • Learning Hierarchical Image Representation with Sparsity, Saliency and Locality[Paper][Code]

  • Online Multiple Support Instance Tracking [Paper][Code]

  • Visual Tracking with Online Multiple Instance Learning[Project]

  • Object detection and recognition[Project]

  • Compressive Sensing Resources[Project]

  • Robust Real-Time Visual Tracking using Pixel-Wise Posteriors[

    相關推薦

    影象處理專案程式碼包括特徵提取-影象分割-分類-匹配-等等

           這幾天在研究血管增強與分割,發現一個比較全面的影象處理方面的專案集合,裡面涵蓋了特徵提取、影象分割、影象分類、影象匹配、影象降噪,光流法等等方面的專案和程式碼集合,專案是2012年之前的,但是涵蓋比較基礎的原理知識,用到的時候可以參考一下: Topic

    自然語言處理簡潔自用程式碼

    記錄文書處理的各種簡介的程式碼表示 1.快速去除中文標點(read的時候要以utf8格式) def clean_str(string): string = re.sub("[^\u4e00-\u9fff]", " ", string) s

    模糊理論在影象處理的應用

    本文選自:http://www.cnblogs.com/Imageshop/p/3302850.html,作者寫的非常不錯,包括另外一篇文章:http://www.cnblogs.com/Imageshop/p/3307308.html,感謝作者的辛勤勞動!自己整理過來備份。 這是篇

    影象分割程式碼【轉】

    原文:http://www.360doc.com/content/12/0201/11/8703626_183332994.shtml Computer Vision Resources Maintained by Jia-Bin Huang Submit resource l

    影象處理SIFTFASTMSERSTAR等特徵提取演算法的比較與分析(利用openCV實現)

    本人為研究生,最近的研究方向是物體識別。所以就將常用的幾種特徵提取方式做了一個簡要的實驗和分析。這些實驗都是藉助於openCV在vs2010下完成的。基本上都是使用的openCV中內建的一些功能函式。 1. SIFT演算法 尺度不變特徵轉換(Scale-inva

    影象處理各種邊緣檢測的微分運算元簡單比較(SobelRobert PrewittLaplacianCanny)

    在邊沿檢測中,常用的一種模板是Sobel 運算元。Sobel 運算元有兩個,一個是檢測水平邊沿的;另一個是檢測垂直平邊沿的 。Sobel運算元另一種形式是各向同性Sobel(Isotropic Sobel)運算元,也有兩個,一個是檢測水平邊沿的,另一個是檢測垂直平邊沿的 。各向同性Sobel運算元和普通Sob

    JavaScript電子書你不領一份兒嗎

    scrip mage 合集 理解 png 都是 .com body 高清 學習編程不能只看視頻。 看技術博客,看文檔,看相關編程書籍,都是必不可少的學習環節,也是加深對語言理解的一種有效方法。 這裏,略小坑給大家整理了36本JavaScript經典書籍的電子版,除了幾本是掃

    大數據:數據大你想要的這裏或許會有

    數據資源大數據時代,用數據做出理性分析顯然更為有力。做數據分析前,能夠找到合適的的數據源是一件非常重要的事情,獲取數據的方式有很多種,不必局限。下面將從公開的數據集、爬蟲、數據采集工具、付費API等等介紹。給大家推薦一些能夠用得上的數據獲取方式。 一、公開數據庫 1.常用數據公開網站 UCI:經典的機器學習、

    萌生玩吧單機遊戲持續更新一鍵下載一次購買長期下載。

    中文補丁 工作 大戰 1.7 軟件 塔防 bsp 補丁 勛章 持續更新,一鍵下載,一次購買,長期下載。 不忘初心方得始終,堅持做廣大網友心目中最好用的遊戲合集!良心賣家【沒有的遊戲免費幫找】下面是遊戲表群內還有2000G遊戲種子,並長期更新遊戲。帶圖十字好評後審核後進群價格

    影象處理的增強演算法---灰級窗切片增強

    灰級窗切片增強--相比較X光更適合於CT,程式如下: import cv2 import numpy as np I = cv2.imread('*.png',0) h, w = I.shape fa = 40 fb = 160 k = 255/(160-45) J = np.zeros((h,

    影象處理的數學原理歸類

    影象處理中的數學原理歸類 原文:https://blog.csdn.net/baimafujinji/article/details/48467225 我的“影象處理中的數學原理”專欄中之系列文章已經以《影象處理中的數學修煉》為名結集出版(清華大學出版社)。該書詳細介紹影象處理中的數學原

    微信小程式精選Demo你確定不要嗎?

    小編最近在開發小程式,也讀到了不少優秀的小程式原始碼,專案中有些需求可以直接從原始碼裡貼上複製過來,雖然這樣做不利於自己獨立編寫程式碼,但比較是給公司做專案啊,秉著效率第一的原則,簡直沒有什麼比ctrl+c,ctrl+v,更加順手了。為了感恩大家長久以來的關注和支援,小編準備了一些福利,整理了130

    如何在eclipse新增程式碼檢查外掛實時提示檢查問題eclipse+sonarLint+sonarqube平臺程式碼檢查規則

    在eclipse中引入sonarLint外掛 步驟如下: 1、sonarLint安裝 開啟eclipse後,執行    help->Eclipse Marketplace->查詢sonarLint        

    安卓智慧電視TV應用不定時更新!

    TV端視訊軟體有很多,比如知名的銀河奇異果、雲視聽極光、CIBN環球影視等等 ,這裡主要分享一些新出的非主流應用,有些非常優秀。歡迎大家試用,不定時增補更新此帖!另外,電視盒子使用者必須懂得一些小技巧,才能使用電視盒子的全部功能!搬磚烈火整理的!因廣電封鎖太嚴重,一些 App 可能失效,請及時反饋。

    量化交易原創乾貨送給每一位愛學習的寬客quant

    序號 標題 傳送連結 1 雙均線策略(期貨)  量化策略原始碼 https://www.myquant.cn/docs/python_strategyies/153

    膨脹、腐蝕、開、閉運算——數字影象處理的形態學

    轉自:https://blog.csdn.net/welcome_xu/article/details/6694985 膨脹、腐蝕、開、閉運算是數學形態學最基本的變換。 本文主要針對二值影象的形態學 膨脹:把二值影象各1畫素連線成分的邊界擴大一層(填充邊緣或0畫素內部的孔); 腐蝕:把二

    用深度學習解決自然語言處理的7大問題文字分類、語言建模、機器翻譯

    摘要: 本文講的是用深度學習解決自然語言處理中的7大問題,文字分類、語言建模、機器翻譯等,自然語言處理領域正在從統計學方法轉向神經網路方法。在自然語言中,仍然存在許多具有挑戰性的問題。但是,深度學習方法在某些特定的語言問題上取得了state-of-the-art的結果。 本文講的是用深度學習解決自

    數字影象處理——值濾波

    原理:模板中心對準待處理畫素,對模板下的對應畫素進行灰度值排序,將中值賦給當前畫素 Matlab程式碼: clear,clc; car = imread('sport car.pgm'); noise_car = imnoise(car,'salt & pepper',0.02);

    影象處理的模板匹配c++實現

    一、理論基礎 基於相關的模板匹配技術可直接用於在一幅影象中,尋找某種子影象模式。對於大小為MxN的影象f(x,y)和大小為JxK的子影象模式w(x,y),f與w的相關可表示為: 其種,x=0,1,2,…N-K,y=0,1,2,…M-J。此處 的目的是尋找

    影象處理飽和度、色調、對比度的定義

    目錄   飽和度 色調 對比度   轉自這裡   影象處理(image processing),用計算機對影象進行分析,以達到所需結果的技術。又稱影像處理。影象處理一般指數字影象處理。數字影象是指用工業相機、攝像機、掃描器等裝置經