1. 程式人生 > >Java多執行緒(九)之ReentrantLock與Condition

Java多執行緒(九)之ReentrantLock與Condition

一、ReentrantLock 類

1.1 什麼是reentrantlock

java.util.concurrent.lock 中的 Lock 框架是鎖定的一個抽象,它允許把鎖定的實現作為 Java 類,而不是作為語言的特性來實現。這就為 Lock 的多種實現留下了空間,各種實現可能有不同的排程演算法、效能特性或者鎖定語義。 ReentrantLock 類實現了 Lock ,它擁有與 synchronized 相同的併發性和記憶體語義,但是添加了類似鎖投票、定時鎖等候和可中斷鎖等候的一些特性。此外,它還提供了在激烈爭用情況下更佳的效能。(換句話說,當許多執行緒都想訪問共享資源時,JVM 可以花更少的時候來排程執行緒,把更多時間用在執行執行緒上。)
reentrant 鎖意味著什麼呢?簡單來說,它有一個與鎖相關的獲取計數器,如果擁有鎖的某個執行緒再次得到鎖,那麼獲取計數器就加1,然後鎖需要被釋放兩次才能獲得真正釋放。這模仿了 synchronized 的語義;如果執行緒進入由執行緒已經擁有的監控器保護的 synchronized 塊,就允許執行緒繼續進行,當執行緒退出第二個(或者後續) synchronized 塊的時候,不釋放鎖,只有執行緒退出它進入的監控器保護的第一個 synchronized 塊時,才釋放鎖。

1.2 ReentrantLock與synchronized的比較

相同:ReentrantLock提供了synchronized類似的功能和記憶體語義。

不同:

(1)ReentrantLock功能性方面更全面,比如時間鎖等候,可中斷鎖等候,鎖投票等,因此更有擴充套件性。在多個條件變數和高度競爭鎖的地方,用ReentrantLock更合適,ReentrantLock還提供了Condition,對執行緒的等待和喚醒等操作更加靈活,一個ReentrantLock可以有多個Condition例項,所以更有擴充套件性。

(2)ReentrantLock 的效能比synchronized會好點。

(3)ReentrantLock提供了可輪詢的鎖請求,他可以嘗試的去取得鎖,如果取得成功則繼續處理,取得不成功,可以等下次執行的時候處理,所以不容易產生死鎖,而synchronized則一旦進入鎖請求要麼成功,要麼一直阻塞,所以更容易產生死鎖。

1.3 ReentrantLock擴充套件的功能

1.3.1 實現可輪詢的鎖請求 

在內部鎖中,死鎖是致命的——唯一的恢復方法是重新啟動程式,唯一的預防方法是在構建程式時不要出錯。而可輪詢的鎖獲取模式具有更完善的錯誤恢復機制,可以規避死鎖的發生。 
如果你不能獲得所有需要的鎖,那麼使用可輪詢的獲取方式使你能夠重新拿到控制權,它會釋放你已經獲得的這些鎖,然後再重新嘗試。可輪詢的鎖獲取模式,由tryLock()方法實現。此方法僅在呼叫時鎖為空閒狀態才獲取該鎖。如果鎖可用,則獲取鎖,並立即返回值true。如果鎖不可用,則此方法將立即返回值false。此方法的典型使用語句如下: 
Lock lock = ...; 
if (lock.tryLock()) { 
try { 
// manipulate protected state 
} finally { 
lock.unlock(); 
} 
} else { 
// perform alternative actions 
} 

1.3.2 實現可定時的鎖請求 

當使用內部鎖時,一旦開始請求,鎖就不能停止了,所以內部鎖給實現具有時限的活動帶來了風險。為了解決這一問題,可以使用定時鎖。當具有時限的活 
動呼叫了阻塞方法,定時鎖能夠在時間預算內設定相應的超時。如果活動在期待的時間內沒能獲得結果,定時鎖能使程式提前返回。可定時的鎖獲取模式,由tryLock(long, TimeUnit)方法實現。 

1.3.3 實現可中斷的鎖獲取請求 

可中斷的鎖獲取操作允許在可取消的活動中使用。lockInterruptibly()方法能夠使你獲得鎖的時候響應中斷。

1.4 ReentrantLock不好與需要注意的地方

(1) lock 必須在 finally 塊中釋放。否則,如果受保護的程式碼將丟擲異常,鎖就有可能永遠得不到釋放!這一點區別看起來可能沒什麼,但是實際上,它極為重要。忘記在 finally 塊中釋放鎖,可能會在程式中留下一個定時炸彈,當有一天炸彈爆炸時,您要花費很大力氣才有找到源頭在哪。而使用同步,JVM 將確保鎖會獲得自動釋放 (2) 當 JVM 用 synchronized 管理鎖定請求和釋放時,JVM 在生成執行緒轉儲時能夠包括鎖定資訊。這些對除錯非常有價值,因為它們能標識死鎖或者其他異常行為的來源。 Lock 類只是普通的類,JVM 不知道具體哪個執行緒擁有 Lock 物件。

二、條件變數Condition

條件變數很大一個程度上是為了解決Object.wait/notify/notifyAll難以使用的問題。

條件(也稱為條件佇列 或條件變數)為執行緒提供了一個含義,以便在某個狀態條件現在可能為 true 的另一個執行緒通知它之前,一直掛起該執行緒(即讓其“等待”)。因為訪問此共享狀態資訊發生在不同的執行緒中,所以它必須受保護,因此要將某種形式的鎖與該條件相關聯。等待提供一個條件的主要屬性是:以原子方式 釋放相關的鎖,並掛起當前執行緒,就像 Object.wait 做的那樣。

上述API說明表明條件變數需要與鎖繫結,而且多個Condition需要繫結到同一鎖上。前面的Lock中提到,獲取一個條件變數的方法是Lock.newCondition()

void await() throws InterruptedException;

void awaitUninterruptibly();

long awaitNanos(long nanosTimeout) throws InterruptedException;

boolean await(long time, TimeUnit unit) throws InterruptedException;

boolean awaitUntil(Date deadline) throws InterruptedException;

void signal();

void signalAll();


以上是Condition介面定義的方法,await*對應於Object.waitsignal對應於Object.notifysignalAll對應於Object.notifyAll。特別說明的是Condition的介面改變名稱就是為了避免與Object中的wait/notify/notifyAll的語義和使用上混淆,因為Condition同樣有wait/notify/notifyAll方法。

每一個Lock可以有任意資料的Condition物件,Condition是與Lock繫結的,所以就有Lock的公平性特性:如果是公平鎖,執行緒為按照FIFO的順序從Condition.await中釋放,如果是非公平鎖,那麼後續的鎖競爭就不保證FIFO順序了。

一個使用Condition實現生產者消費者的模型例子如下。

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

public class ProductQueue<T> {

    private final T[] items;

    private final Lock lock = new ReentrantLock();

    private Condition notFull = lock.newCondition();

    private Condition notEmpty = lock.newCondition();

    //
    private int head, tail, count;

    public ProductQueue(int maxSize) {
        items = (T[]) new Object[maxSize];
    }

    public ProductQueue() {
        this(10);
    }

    public void put(T t) throws InterruptedException {
        lock.lock();
        try {
            while (count == getCapacity()) {
                notFull.await();
            }
            items[tail] = t;
            if (++tail == getCapacity()) {
                tail = 0;
            }
            ++count;
            notEmpty.signalAll();
        } finally {
            lock.unlock();
        }
    }

    public T take() throws InterruptedException {
        lock.lock();
        try {
            while (count == 0) {
                notEmpty.await();
            }
            T ret = items[head];
            items[head] = null;//GC
            //
            if (++head == getCapacity()) {
                head = 0;
            }
            --count;
            notFull.signalAll();
            return ret;
        } finally {
            lock.unlock();
        }
    }

    public int getCapacity() {
        return items.length;
    }

    public int size() {
        lock.lock();
        try {
            return count;
        } finally {
            lock.unlock();
        }
    }

}


在這個例子中消費take()需要 佇列不為空,如果為空就掛起(await()),直到收到notEmpty的訊號;生產put()需要佇列不滿,如果滿了就掛起(await()),直到收到notFull的訊號。

可能有人會問題,如果一個執行緒lock()物件後被掛起還沒有unlock,那麼另外一個執行緒就拿不到鎖了(lock()操作會掛起),那麼就無法通知(notify)前一個執行緒,這樣豈不是“死鎖”了?

2.1 await* 操作

上一節中說過多次ReentrantLock是獨佔鎖,一個執行緒拿到鎖後如果不釋放,那麼另外一個執行緒肯定是拿不到鎖,所以在lock.lock()lock.unlock()之間可能有一次釋放鎖的操作(同樣也必然還有一次獲取鎖的操作)。我們再回頭看程式碼,不管take()還是put(),在進入lock.lock()後唯一可能釋放鎖的操作就是await()了。也就是說await()操作實際上就是釋放鎖,然後掛起執行緒,一旦條件滿足就被喚醒,再次獲取鎖!

public final void await() throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    Node node = addConditionWaiter();
    int savedState = fullyRelease(node);
    int interruptMode = 0;
    while (!isOnSyncQueue(node)) {
        LockSupport.park(this);
        if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
            break;
    }
    if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
        interruptMode = REINTERRUPT;
    if (node.nextWaiter != null)
        unlinkCancelledWaiters();
    if (interruptMode != 0)
        reportInterruptAfterWait(interruptMode);
}


上面是await()的程式碼片段。上一節中說過,AQS在獲取鎖的時候需要有一個CHL的FIFO佇列,所以對於一個Condition.await()而言,如果釋放了鎖,要想再一次獲取鎖那麼就需要進入佇列,等待被通知獲取鎖。完整的await()操作是安裝如下步驟進行的:

    1. 將當前執行緒加入Condition鎖佇列。特別說明的是,這裡不同於AQS的佇列,這裡進入的是Condition的FIFO佇列。後面會具體談到此結構。進行2。
    2. 釋放鎖。這裡可以看到將鎖釋放了,否則別的執行緒就無法拿到鎖而發生死鎖。進行3。
    3. 自旋(while)掛起,直到被喚醒或者超時或者CACELLED等。進行4。
    4. 獲取鎖(acquireQueued)。並將自己從Condition的FIFO佇列中釋放,表明自己不再需要鎖(我已經拿到鎖了)。

這裡再回頭介紹Condition的資料結構。我們知道一個Condition可以在多個地方被await*(),那麼就需要一個FIFO的結構將這些Condition串聯起來,然後根據需要喚醒一個或者多個(通常是所有)。所以在Condition內部就需要一個FIFO的佇列。

private transient Node firstWaiter;
private transient Node lastWaiter;

上面的兩個節點就是描述一個FIFO的佇列。我們再結合前面提到的節點(Node)資料結構。我們就發現Node.nextWaiter就派上用場了!nextWaiter就是將一系列的Condition.await*串聯起來組成一個FIFO的佇列。

2.2 signal/signalAll 操作

await*()清楚了,現在再來看signal/signalAll就容易多了。按照signal/signalAll的需求,就是要將Condition.await*()中FIFO佇列中第一個Node喚醒(或者全部Node)喚醒。儘管所有Node可能都被喚醒,但是要知道的是仍然只有一個執行緒能夠拿到鎖,其它沒有拿到鎖的執行緒仍然需要自旋等待,就上上面提到的第4步(acquireQueued)。

private void doSignal(Node first) {
    do {
        if ( (firstWaiter = first.nextWaiter) == null)
            lastWaiter = null;
        first.nextWaiter = null;
    } while (!transferForSignal(first) &&
             (first = firstWaiter) != null);
}

private void doSignalAll(Node first) {
    lastWaiter = firstWaiter  = null;
    do {
        Node next = first.nextWaiter;
        first.nextWaiter = null;
        transferForSignal(first);
        first = next;
    } while (first != null);
}


上面的程式碼很容易看出來,signal就是喚醒Condition佇列中的第一個非CANCELLED節點執行緒,而signalAll就是喚醒所有非CANCELLED節點執行緒。當然了遇到CANCELLED執行緒就需要將其從FIFO佇列中剔除。

final boolean transferForSignal(Node node) {
    if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
        return false;

    Node p = enq(node);
    int c = p.waitStatus;
    if (c > 0 || !compareAndSetWaitStatus(p, c, Node.SIGNAL))
        LockSupport.unpark(node.thread);
    return true;
}


上面就是喚醒一個await*()執行緒的過程,根據前面的小節介紹的,如果要unpark執行緒,並使執行緒拿到鎖,那麼就需要執行緒節點進入AQS的佇列。所以可以看到在LockSupport.unpark之前呼叫了enq(node)操作,將當前節點加入到AQS佇列。

參考:

《深入淺出 Java Concurrency》—鎖機制(一)Lock與ReentrantLock
http://blog.csdn.net/fg2006/article/details/6397894
Java多執行緒基礎總結七:ReentrantLock(2)
http://www.bianceng.cn/Programming/Java/201206/34155_2.htm
再談重入鎖--ReentrantLock
http://tenyears.iteye.com/blog/48750
深入淺出 Java Concurrency (9): 鎖機制 part 4
http://www.blogjava.net/xylz/archive/2010/07/08/325540.html