1. 程式人生 > >TensorFlow學習筆記(7)--實現卷積神經網路(同(5),不同的程式風格)

TensorFlow學習筆記(7)--實現卷積神經網路(同(5),不同的程式風格)

import tensorflow as tf
import numpy as np
import input_data

mnist = input_data.read_data_sets('data/', one_hot=True)
print("MNIST ready")

n_input  = 784 # 28*28的灰度圖,畫素個數784
n_output = 10  # 是10分類問題

# 權重項
weights = {
    # conv1,引數[3, 3, 1, 32]分別指定了filter的h、w、所連線輸入的維度、filter的個數即產生特徵圖個數
    'wc1': tf.Variable(tf.random_normal([3
, 3, 1, 32], stddev=0.1)), # conv2,這裡引數3,3同上,32是當前連線的深度是32,即前面特徵圖的個數,64為輸出的特徵圖的個數 'wc2': tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.1)), # fc1,將特徵圖轉換為向量,1024由自己定義 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024], stddev=0.1)), # fc2,做10分類任務,前面連1024,輸出10分類 'wd2': tf.Variable(tf.random_normal([1024
, n_output], stddev=0.1)) } """ 特徵圖大小計算: f_w = (w-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 說明經過卷積層並沒有改變圖片的大小 f_h = (h-f+2*pad)/s + 1 = (28-3+2*1)/1 + 1 = 28 # 特徵圖的大小是經過池化層後改變的 第一次pooling後28*28變為14*14 第二次pooling後14*14變為7*7,即最終是一個7*7*64的特徵圖 """ # 偏置項 biases = { 'bc1': tf.Variable(tf.random_normal([32
], stddev=0.1)), # conv1,對應32個特徵圖 'bc2': tf.Variable(tf.random_normal([64], stddev=0.1)), # conv2,對應64個特徵圖 'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)), # fc1,對應1024個向量 'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1)) # fc2,對應10個輸出 } def conv_basic(_input, _w, _b, _keep_prob): # INPUT # 對影象做預處理,轉換為tf支援的格式,即[n, h, w, c],-1是確定好其它3維後,讓tf去推斷剩下的1維 _input_r = tf.reshape(_input, shape=[-1, 28, 28, 1]) # CONV LAYER 1 _conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME') # [1, 1, 1, 1]分別代表batch_size、h、w、c的stride # padding有兩種選擇:'SAME'(視窗滑動時,畫素不夠會自動補0)或'VALID'(不夠就跳過)兩種選擇 _conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1'])) # 卷積層後連啟用函式 # 最大值池化,[1, 2, 2, 1]其中1,1對應batch_size和channel,2,2對應2*2的池化 _pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 隨機殺死一些神經元,_keepratio為保留神經元比例,如0.6 _pool_dr1 = tf.nn.dropout(_pool1, _keep_prob) # CONV LAYER 2 _conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME') _conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2'])) _pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') _pool_dr2 = tf.nn.dropout(_pool2, _keep_prob) # dropout # VECTORIZE向量化 # 定義全連線層的輸入,把pool2的輸出做一個reshape,變為向量的形式 _densel = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]]) # FULLY CONNECTED LAYER 1 _fc1 = tf.nn.relu(tf.add(tf.matmul(_densel, _w['wd1']), _b['bd1'])) # w*x+b,再通過relu _fc_dr1 = tf.nn.dropout(_fc1, _keep_prob) # dropout # FULLY CONNECTED LAYER 2 _out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2']) # w*x+b,得到結果 # RETURN out = {'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool_dr1': _pool_dr1, 'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'densel': _densel, 'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out } return out print("CNN READY") x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先佔地方,樣本個數不確定為None y = tf.placeholder(tf.float32, [None, n_output]) # 用placeholder先佔地方,樣本個數不確定為None keep_prob = tf.placeholder(tf.float32) _pred = conv_basic(x, weights, biases, keep_prob)['out'] # 前向傳播的預測值 cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred, y)) # 交叉熵損失函式 optm = tf.train.AdamOptimizer(0.001).minimize(cost) # 梯度下降優化器 _corr = tf.equal(tf.argmax(_pred, 1), tf.argmax(y, 1)) # 對比預測值索引和實際label索引,相同返回True,不同返回False accr = tf.reduce_mean(tf.cast(_corr, tf.float32)) # 將True或False轉換為1或0,並對所有的判斷結果求均值 init = tf.global_variables_initializer() print("FUNCTIONS READY") # 上面神經網路結構定義好之後,下面定義一些超引數 training_epochs = 1000 # 所有樣本迭代1000次 batch_size = 100 # 每進行一次迭代選擇100個樣本 display_step = 1 # LAUNCH THE GRAPH sess = tf.Session() # 定義一個Session sess.run(init) # 在sess裡run一下初始化操作 # OPTIMIZE for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐個batch的去取資料 sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keep_prob:0.5}) avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob:1.0})/total_batch if epoch % display_step == 0: train_accuracy = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0}) test_accuracy = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels, keep_prob:1.0}) print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (epoch, training_epochs, avg_cost, train_accuracy, test_accuracy)) print("DONE")

我用的顯示卡是GTX960,在跑這個卷積神經網路的時候,第一次filter分別設的是64和128,結果報蜜汁錯誤了,反正就是我視訊記憶體不足,所以改成了32和64,讓特徵圖少一點。所以,是讓我換1080的意思嘍

I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:885] Found device 0 with properties: 
name: GeForce GTX 960
major: 5 minor: 2 memoryClockRate (GHz) 1.304
pciBusID 0000:01:00.0
Total memory: 4.00GiB
Free memory: 3.33GiB
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:906] DMA: 0 
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:916] 0:   Y 
I c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\gpu\gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 960, pci bus id: 0000:01:00.0)
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.59GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 1.34GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 2.10GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
W c:\tf_jenkins\home\workspace\release-win\device\gpu\os\windows\tensorflow\core\common_runtime\bfc_allocator.cc:217] Ran out of memory trying to allocate 3.90GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory is available.
Epoch: 000/1000 cost: 0.517761162 TRAIN ACCURACY: 0.970 TEST ACCURACY: 0.967
Epoch: 001/1000 cost: 0.093012387 TRAIN ACCURACY: 0.960 TEST ACCURACY: 0.979
.
.
.
省略