1. 程式人生 > >TensorFlow學習筆記(5)--實現卷積神經網路(MNIST資料集)

TensorFlow學習筆記(5)--實現卷積神經網路(MNIST資料集)

這裡使用TensorFlow實現一個簡單的卷積神經網路,使用的是MNIST資料集。網路結構為:資料輸入層–卷積層1–池化層1–卷積層2–池化層2–全連線層1–全連線層2(輸出層),這是一個簡單但非常有代表性的卷積神經網路。

import tensorflow as tf
import numpy as np
import input_data

mnist = input_data.read_data_sets('data/', one_hot=True)
print("MNIST ready")

sess = tf.InteractiveSession()

# 定義好初始化函式以便重複使用。給權重製造一些隨機噪聲來打破完全對稱,使用截斷的正態分佈,標準差設為0.1,
# 同時因為使用relu,也給偏執增加一些小的正值(0.1)用來避免死亡節點(dead neurons) def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1
, 1, 1, 1], padding='SAME') # 引數分別指定了卷積核的尺寸、多少個channel、filter的個數即產生特徵圖的個數 # 2x2最大池化,即將一個2x2的畫素塊降為1x1的畫素。最大池化會保留原始畫素塊中灰度值最高的那一個畫素,即保留最顯著的特徵。 def max_pool_2x2(x): return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') n_input = 784 # 28*28的灰度圖,畫素個數784 n_output = 10 # 是10分類問題
# 在設計網路結構前,先定義輸入的placeholder,x是特徵,y是真實的label x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_output]) x_image = tf.reshape(x, [-1, 28, 28, 1]) # 對影象做預處理,將1D的輸入向量轉為2D的圖片結構,即1*784到28*28的結構,-1代表樣本數量不固定,1代表顏色通道數量 # 定義第一個卷積層,使用前面寫好的函式進行引數初始化,包括weight和bias W_conv1 = weight_variable([3, 3, 1, 32]) b_conv1 = bias_variable([32]) h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool_2x2(h_conv1) # 定義第二個卷積層 W_conv2 = weight_variable([3, 3, 32, 64]) b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) # fc1,將兩次池化後的7*7共128個特徵圖轉換為1D向量,隱含節點1024由自己定義 W_fc1 = weight_variable([7*7*64, 1024]) b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # 為了減輕過擬合,使用Dropout層 keep_prob = tf.placeholder(tf.float32) h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Dropout層輸出連線一個Softmax層,得到最後的概率輸出 W_fc2 = weight_variable([1024, 10]) b_fc2 = bias_variable([10]) pred = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #前向傳播的預測值, print("CNN READY") # 定義損失函式為交叉熵損失函式 cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=[1])) # 優化器 optm = tf.train.AdamOptimizer(0.001).minimize(cost) # 定義評測準確率的操作 corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # 對比預測值的索引和真實label的索引是否一樣,一樣返回True,不一樣返回False accuracy = tf.reduce_mean(tf.cast(corr, tf.float32)) # 初始化所有引數 tf.global_variables_initializer().run() print("FUNCTIONS READY") training_epochs = 1000 # 所有樣本迭代1000次 batch_size = 100 # 每進行一次迭代選擇100個樣本 display_step = 1 for i in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) batch = mnist.train.next_batch(batch_size) optm.run(feed_dict={x:batch[0], y:batch[1], keep_prob:0.7}) avg_cost += sess.run(cost, feed_dict={x:batch[0], y:batch[1], keep_prob:1.0})/total_batch if i % display_step ==0: # 每10次訓練,對準確率進行一次測試 train_accuracy = accuracy.eval(feed_dict={x:batch[0], y:batch[1], keep_prob:1.0}) test_accuracy = accuracy.eval(feed_dict={x:mnist.test.images, y:mnist.test.labels, keep_prob:1.0}) print("step: %d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f" % (i, avg_cost, train_accuracy, test_accuracy)) print("DONE")

訓練迭代1000次之後,測試分類正確率達到了98.6%

step: 999  cost: 0.000048231  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.986

在2000次的時候達到了99.1%

step: 2004  cost: 0.000042901  TRAIN ACCURACY: 0.990  TEST ACCURACY: 0.991

相比之前簡單神經網路,CNN的效果明顯較好,這其中主要的效能提升都來自於更優秀的網路設計,即卷積神經網路對影象特徵的提取和抽象能力。依靠卷積核的權值共享,CNN的引數量並沒有爆炸,降低計算量的同時也減輕了過擬合,因此整個模型的效能有較大的提升。