1. 程式人生 > >樸素貝葉斯分類器--一種簡單有效的常用分類演算法

樸素貝葉斯分類器--一種簡單有效的常用分類演算法

一、病人分類的例子

讓我從一個例子開始講起,你會看到貝葉斯分類器很好懂,一點都不難。
某個醫院早上收了六個門診病人,如下表。

   症狀  職業   疾病

  打噴嚏 護士   感冒
  打噴嚏 農夫   過敏
  頭痛  建築工人 腦震盪
  頭痛  建築工人 感冒
  打噴嚏 教師   感冒
  頭痛  教師   腦震盪 

現在又來了第七個病人,是一個打噴嚏的建築工人。請問他患上感冒的概率有多大?

根據貝葉斯定理:

P(A|B) = P(B|A) P(A) / P(B)

可得

P(感冒|打噴嚏x建築工人)
    = P(打噴嚏x建築工人|感冒) x P(感冒)
    / P(打噴嚏x建築工人) 

假定”打噴嚏”和”建築工人”這兩個特徵是獨立的,因此,上面的等式就變成了

 P(感冒|打噴嚏x建築工人)
    = P(打噴嚏|感冒) x P(建築工人|感冒) x P(感冒)
    / P(打噴嚏) x P(建築工人) 

這是可以計算的:

P(感冒|打噴嚏x建築工人)
    = 0.66 x 0.33 x 0.5 / 0.5 x 0.33
    = 0.66 

因此,這個打噴嚏的建築工人,有66%的概率是得了感冒。同理,可以計算這個病人患上過敏或腦震盪的概率。比較這幾個概率,就可以知道他最可能得什麼病。

這就是貝葉斯分類器的基本方法:在統計資料的基礎上,依據某些特徵,計算各個類別的概率,從而實現分類。

二、樸素貝葉斯分類器的公式

假設某個體有n項特徵(Feature),分別為F1、F2、…、Fn。現有m個類別(Category),分別為C1、C2、…、Cm。貝葉斯分類器就是計算出概率最大的那個分類,也就是求下面這個算式的最大值:

P(C|F1F2...Fn)
  = P(F1F2...Fn|C)P(C) / P(F1F2...Fn)

由於 P(F1F2…Fn) 對於所有的類別都是相同的,可以省略,問題就變成了求

P(F1F2...Fn|C)P(C) 

的最大值。

樸素貝葉斯分類器則是更進一步,假設所有特徵都彼此獨立,因此

P(F1F2...Fn|C)P(C)
  = P(F1|C)P(F2|C) ...
P(Fn|C)P(C)

上式等號右邊的每一項,都可以從統計資料中得到,由此就可以計算出每個類別對應的概率,從而找出最大概率的那個類。

雖然”所有特徵彼此獨立”這個假設,在現實中不太可能成立,但是它可以大大簡化計算,而且有研究表明對分類結果的準確性影響不大。

下面再通過兩個例子,來看如何使用樸素貝葉斯分類器。

三、賬號分類的例子

根據某社群網站的抽樣統計,該站10000個賬號中有89%為真實賬號(設為C0),11%為虛假賬號(設為C1)
接下來,就要用統計資料判斷一個賬號的真實性。假定某一個賬號有以下三個特徵:

       F1: 日誌數量/註冊天數
    F2: 好友數量/註冊天數
    F3: 是否使用真實頭像(真實頭像為1,非真實頭像為0)

    F1 = 0.1
    F2 = 0.2
    F3 = 0

請問該賬號是真實賬號還是虛假賬號?

方法是使用樸素貝葉斯分類器,計算下面這個計算式的值。
P(F1|C)P(F2|C)P(F3|C)P(C)

雖然上面這些值可以從統計資料得到,但是這裡有一個問題:F1和F2是連續變數,不適宜按照某個特定值計算概率。

一個技巧是將連續值變為離散值,計算區間的概率。比如將F1分解成[0, 0.05]、(0.05, 0.2)、[0.2, +∞]三個區間,然後計算每個區間的概率。在我們這個例子中,F1等於0.1,落在第二個區間,所以計算的時候,就使用第二個區間的發生概率。

根據統計資料,可得:

       P(F1|C0) = 0.5, P(F1|C1) = 0.1
      P(F2|C0) = 0.7, P(F2|C1) = 0.2
      P(F3|C0) = 0.2, P(F3|C1) = 0.9

因此,

 P(F1|C0) P(F2|C0) P(F3|C0) P(C0)
    = 0.5 x 0.7 x 0.2 x 0.89
    = 0.0623

  P(F1|C1) P(F2|C1) P(F3|C1) P(C1)
    = 0.1 x 0.2 x 0.9 x 0.11
    = 0.00198

可以看到,雖然這個使用者沒有使用真實頭像,但是他是真實賬號的概率,比虛假賬號高出30多倍,因此判斷這個賬號為真。

四、性別分類的例子

本例摘自維基百科,關於處理連續變數的另一種方法。

下面是一組人類身體特徵的統計資料。

性別  身高(英尺) 體重(磅)  腳掌(英寸)

  男    6       180     12
  男    5.92     190     11
  男    5.58     170     12
  男    5.92     165     10
  女    5       100     6
  女    5.5      150     8
  女    5.42     130     7
  女    5.75     150     9 

已知某人身高6英尺、體重130磅,腳掌8英寸,請問該人是男是女?

根據樸素貝葉斯分類器,計算下面這個式子的值
P(身高|性別) x P(體重|性別) x P(腳掌|性別) x P(性別)

這裡的困難在於,由於身高、體重、腳掌都是連續變數,不能採用離散變數的方法計算概率。而且由於樣本太少,所以也無法分成區間計算。怎麼辦?

這時,可以假設男性和女性的身高、體重、腳掌都是正態分佈,通過樣本計算出均值和方差,也就是得到正態分佈的密度函式。有了密度函式,就可以把值代入,算出某一點的密度函式的值。

比如,男性的身高是均值5.855、方差0.035的正態分佈。所以,男性的身高為6英尺的概率的相對值等於1.5789(大於1並沒有關係,因為這裡是密度函式的值,只用來反映各個值的相對可能性)。

這裡寫圖片描述

有了這些資料以後,就可以計算性別的分類了。

  P(身高=6|男) x P(體重=130|男) x P(腳掌=8|男) x P(男)
    = 6.1984 x e-9

  P(身高=6|女) x P(體重=130|女) x P(腳掌=8|女) x P(女)
    = 5.3778 x e-4

可以看到,女性的概率比男性要高出將近10000倍,所以判斷該人為女性。

(完)