1. 程式人生 > >【Python 程式碼】CS231n中Softmax線性分類器、非線性分類器對比舉例(含python繪圖顯示結果)

【Python 程式碼】CS231n中Softmax線性分類器、非線性分類器對比舉例(含python繪圖顯示結果)

#CS231n中線性、非線性分類器舉例(Softmax)
#注意其中反向傳播的計算

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
N = 100 # number of points per class
D = 2 # dimensionality
K = 3 # number of classes
X = np.zeros((N*K,D)) # data matrix (each row = single example)
y = np.zeros(N*K, dtype='uint8') # class labels
for j in xrange(K): ix = range(N*j,N*(j+1)) r = np.linspace(0.0,1,N) # radius t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] y[ix] = j # lets visualize the data: plt.xlim([-1, 1]) plt.ylim([-1, 1]) plt.scatter(X[:, 0], X[:, 1], c=y, s=40
, cmap=plt.cm.Spectral) plt.show() # initialize parameters randomly # 線性分類器 W = 0.01 * np.random.randn(D,K) b = np.zeros((1,K)) # some hyperparameters step_size = 1e-0 reg = 1e-3 # regularization strength # gradient descent loop num_examples = X.shape[0] for i in xrange(200): # evaluate class scores, [N x K]
scores = np.dot(X, W) + b # compute the class probabilities exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization corect_logprobs = -np.log(probs[range(num_examples),y]) data_loss = np.sum(corect_logprobs)/num_examples reg_loss = 0.5*reg*np.sum(W*W) loss = data_loss + reg_loss if i % 10 == 0: print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores dscores = probs dscores[range(num_examples),y] -= 1 dscores /= num_examples # backpropate the gradient to the parameters (W,b) dW = np.dot(X.T, dscores) db = np.sum(dscores, axis=0, keepdims=True) dW += reg*W # regularization gradient # perform a parameter update W += -step_size * dW b += -step_size * db # evaluate training set accuracy scores = np.dot(X, W) + b predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y)) # plot the resulting classifier h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b Z = np.argmax(Z, axis=1) Z = Z.reshape(xx.shape) fig = plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max()) ## initialize parameters randomly # 含一個隱層的非線性分類器 使用ReLU h = 100 # size of hidden layer W = 0.01 * np.random.randn(D,h) b = np.zeros((1,h)) W2 = 0.01 * np.random.randn(h,K) b2 = np.zeros((1,K)) # some hyperparameters step_size = 1e-0 reg = 1e-3 # regularization strength # gradient descent loop num_examples = X.shape[0] for i in xrange(10000): # evaluate class scores, [N x K] hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization corect_logprobs = -np.log(probs[range(num_examples),y]) data_loss = np.sum(corect_logprobs)/num_examples reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2) loss = data_loss + reg_loss if i % 1000 == 0: print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores dscores = probs dscores[range(num_examples),y] -= 1 dscores /= num_examples # backpropate the gradient to the parameters # first backprop into parameters W2 and b2 dW2 = np.dot(hidden_layer.T, dscores) db2 = np.sum(dscores, axis=0, keepdims=True) # next backprop into hidden layer dhidden = np.dot(dscores, W2.T) # backprop the ReLU non-linearity dhidden[hidden_layer <= 0] = 0 # finally into W,b dW = np.dot(X.T, dhidden) db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution dW2 += reg * W2 dW += reg * W # perform a parameter update W += -step_size * dW b += -step_size * db W2 += -step_size * dW2 b2 += -step_size * db2 # evaluate training set accuracy hidden_layer = np.maximum(0, np.dot(X, W) + b) scores = np.dot(hidden_layer, W2) + b2 predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y)) # plot the resulting classifier h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = np.dot(np.maximum(0, np.dot(np.c_[xx.ravel(), yy.ravel()], W) + b), W2) + b2 Z = np.argmax(Z, axis=1) Z = Z.reshape(xx.shape) fig = plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max())