python實現模擬退火演算法
摘要:
問題
求F(x)在定義域[5,8]上的最大值
原始碼
# 模擬退火法
import numpy as np
import math
# 定義域x從5到8閉區間
BOUND = [5,8]
tmp = 1e2
tmp_min = 1e-3
alpha = 0.98
beta ...
問題
求F(x)在定義域[5,8]上的最大值
原始碼
# 模擬退火法 import numpy as np import math # 定義域x從5到8閉區間 BOUND = [5,8] tmp = 1e2 tmp_min = 1e-3 alpha = 0.98 beta = 1 def F(x): return math.sin(x*x)+2.0*math.cos(2.0*x) def judge(de,tmp): if de > 0: return 1 else: if math.exp(de/tmp) > np.random.rand(): return 1 else: return 0 x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0] f = F(x) counter = 0 while tmp > tmp_min: delta = (np.random.rand()-0.5)*beta x_new = x + delta if x_new < BOUND[0]: x_new = x_new + BOUND[1] - BOUND[0] if x_new > BOUND[1]: x_new = x_new - BOUND[1] + BOUND[0] f_new = F(x_new) de = f_new - f flag = judge(de,tmp) if(flag): f = f_new x = x_new if de > 0: tmp = tmp * alpha counter += 1 print('current x {}, y {},tmp {},counter {}'.format(x,f,tmp,counter))
執行結果

調調引數看怎樣收斂比較快
# 更優的引數配搭 tmp = 1e2 tmp_min = 1e-3 alpha = 0.89 beta = 1.2

今天也要開心呀