OpenCV+Python實現影象運動模糊和高斯模糊
運動模糊: 由於相機和物體之間的相對運動造成的模糊,又稱為動態模糊
OpenCV+Python實現運動模糊,主要用到的函式是cv2.filter2D():
# coding: utf-8 import numpy as np import cv2 def motion_blur(image, degree=12, angle=45): image = np.array(image) # 這裡生成任意角度的運動模糊kernel的矩陣, degree越大,模糊程度越高 M = cv2.getRotationMatrix2D((degree / 2, degree / 2), angle, 1) motion_blur_kernel = np.diag(np.ones(degree)) motion_blur_kernel = cv2.warpAffine(motion_blur_kernel, M, (degree, degree)) motion_blur_kernel = motion_blur_kernel / degree blurred = cv2.filter2D(image, -1, motion_blur_kernel) # convert to uint8 cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX) blurred = np.array(blurred, dtype=np.uint8) return blurred img = cv2.imread('linuxidc.com.jpg') img_ = motion_blur(img) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
原圖與運動模糊效果如下:
高斯模糊:影象與二維高斯分佈的概率密度函式做卷積,模糊影象細節
OpenCV+Python實現高斯模糊,主要用到的函式是cv2.GaussianBlur():
# coding: utf-8 import numpy as np import cv2 img = cv2.imread('linuxidc.com.jpg') img_ = cv2.GaussianBlur(img, ksize=(9, 9), sigmaX=0, sigmaY=0) cv2.imshow('Source image',img) cv2.imshow('blur image',img_) cv2.waitKey()
高斯模糊效果如下:
更多Python相關資訊見 Python 專題頁面 https://www.linuxidc.com/topicnews.aspx?tid=17
Linux公社的RSS地址 : https://www.linuxidc.com/rssFeed.aspx
本文永久更新連結地址: https://www.linuxidc.com/Linux/2019-05/158653.htm