Transformer註解及PyTorch實現(下)
請先閱讀 ofollow,noindex" target="_blank">Transformer註解及PyTorch實現(上)
目錄
訓練
- 批和掩碼
- 訓練迴圈
- 訓練資料和批處理
- 硬體和訓練進度
-優化器
-正則化
- 標籤平滑
第一個例子
- 資料生成
- 損失計算
- 貪心解碼
真實示例
- 資料載入
- 迭代器
- 多GPU訓練
- 訓練系統附加元件:BPE,搜尋,平均
結果
- 注意力視覺化
結論
訓練
本節介紹模型的訓練方法。
快速穿插介紹訓練標準編碼器解碼器模型需要的一些工具。首先我們定義一個包含源和目標句子的批訓練物件用於訓練,同時構造掩碼。
批和掩碼
-
class Batch:
-
"Object for holding a batch of data with mask during training."
-
def __init__(self, src, trg=None, pad=0):
-
self.src = src
-
self.src_mask = (src != pad).unsqueeze(-2)
-
if trg is not None:
-
self.trg = trg[:, :-1]
-
self.trg_y = trg[:, 1:]
-
self.trg_mask = \
-
self.make_std_mask(self.trg, pad)
-
self.ntokens = (self.trg_y != pad).data.sum()
-
@staticmethod
-
def make_std_mask(tgt, pad):
-
"Create a mask to hide padding and future words."
-
tgt_mask = (tgt != pad).unsqueeze(-2)
-
tgt_mask = tgt_mask & Variable(
-
subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
-
return tgt_mask
接下來,我們建立一個通用的訓練和得分函式來跟蹤損失。我們傳入一個通用的損失計算函式,它也處理引數更新。
訓練迴圈
def run_epoch(data_iter, model, loss_compute): "Standard Training and Logging Function" start = time.time() total_tokens = 0 total_loss = 0 tokens = 0 for i, batch in enumerate(data_iter): out = model.forward(batch.src, batch.trg, batch.src_mask, batch.trg_mask) loss = loss_compute(out, batch.trg_y, batch.ntokens) total_loss += loss total_tokens += batch.ntokens tokens += batch.ntokens if i % 50 == 1: elapsed = time.time() - start print("Epoch Step: %d Loss: %f Tokens per Sec: %f" % (i, loss / batch.ntokens, tokens / elapsed)) start = time.time() tokens = 0 return total_loss / total_tokens
訓練資料和批處理
我們使用標準WMT 2014英語-德語資料集進行了訓練,該資料集包含大約450萬個句子對。 使用位元組對的編碼方法對句子進行編碼,該編碼具有大約37000個詞的共享源-目標詞彙表。 對於英語-法語,我們使用了WMT 2014 英語-法語資料集,該資料集由36M個句子組成,並將詞分成32000個詞片(Word-piece)的詞彙表。
句子對按照近似的序列長度進行批處理。每個訓練批包含一組句子對,包含大約25000個源詞和25000個目標詞。
我們將使用torch text來建立批次。下面更詳細地討論實現過程。 我們在torchtext的一個函式中建立批次,確保填充到最大批訓練長度的大小不超過閾值(如果我們有8個GPU,則閾值為25000)。
global max_src_in_batch, max_tgt_in_batch def batch_size_fn(new, count, sofar): "Keep augmenting batch and calculate total number of tokens + padding." global max_src_in_batch, max_tgt_in_batch if count == 1: max_src_in_batch = 0 max_tgt_in_batch = 0 max_src_in_batch = max(max_src_in_batch, len(new.src)) max_tgt_in_batch = max(max_tgt_in_batch, len(new.trg) + 2) src_elements = count * max_src_in_batch tgt_elements = count * max_tgt_in_batch return max(src_elements, tgt_elements)
硬體和訓練進度
我們在一臺配備8個NVIDIA P100 GPU的機器上訓練我們的模型。 對於使用本文所述的超引數的基本模型,每個訓練單步大約需要0.4秒。 我們對基礎模型進行了總共100,000步或12小時的訓練。 對於我們的大型模型,每個訓練單步時間為1.0秒。 大型模型通常需要訓練300,000步(3.5天)。
優化器
我們選擇Adam[1]作為優化器,其引數為 、
和
。根據以下公式,我們在訓練過程中改變了學習率:
。在預熱中隨步數線性地增加學習速率,並且此後與步數的反平方根成比例地減小它。我們設定預熱步數為4000。
注意:這部分非常重要,需要這種設定訓練模型。
-
class NoamOpt:
-
"Optim wrapper that implements rate."
-
def __init__(self, model_size, factor, warmup, optimizer):
-
self.optimizer = optimizer
-
self._step = 0
-
self.warmup = warmup
-
self.factor = factor
-
self.model_size = model_size
-
self._rate = 0
-
def step(self):
-
"Update parameters and rate"
-
self._step += 1
-
rate = self.rate()
-
for p in self.optimizer.param_groups:
-
p['lr'] = rate
-
self._rate = rate
-
self.optimizer.step()
-
def rate(self, step = None):
-
"Implement `lrate` above"
-
if step is None:
-
step = self._step
-
return self.factor * \
-
(self.model_size ** (-0.5) *
-
min(step ** (-0.5), step * self.warmup ** (-1.5)))
-
def get_std_opt(model):
-
return NoamOpt(model.src_embed[0].d_model, 2, 4000,
-
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
當前模型在不同模型大小和超引數的情況下的曲線示例。
# Three settings of the lrate hyperparameters. opts = [NoamOpt(512, 1, 4000, None), NoamOpt(512, 1, 8000, None), NoamOpt(256, 1, 4000, None)] plt.plot(np.arange(1, 20000), [[opt.rate(i) for opt in opts] for i in range(1, 20000)]) plt.legend(["512:4000", "512:8000", "256:4000"]) None
正則化
標籤平滑
在訓練期間,我們採用了值 [2]的標籤平滑。 這種做法提高了困惑度,因為模型變得更加不確定,但提高了準確性和BLEU分數。
我們使用KL div loss實現標籤平滑。 相比使用獨熱目標分佈,我們建立一個分佈,其包含正確單詞的置信度和整個詞彙表中分佈的其餘平滑項。
class LabelSmoothing(nn.Module): "Implement label smoothing." def __init__(self, size, padding_idx, smoothing=0.0): super(LabelSmoothing, self).__init__() self.criterion = nn.KLDivLoss(size_average=False) self.padding_idx = padding_idx self.confidence = 1.0 - smoothing self.smoothing = smoothing self.size = size self.true_dist = None def forward(self, x, target): assert x.size(1) == self.size true_dist = x.data.clone() true_dist.fill_(self.smoothing / (self.size - 2)) true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) true_dist[:, self.padding_idx] = 0 mask = torch.nonzero(target.data == self.padding_idx) if mask.dim() > 0: true_dist.index_fill_(0, mask.squeeze(), 0.0) self.true_dist = true_dist return self.criterion(x, Variable(true_dist, requires_grad=False))
在這裡,我們可以看到標籤平滑的示例。
-
# Example of label smoothing.
-
crit = LabelSmoothing(5, 0, 0.4)
-
predict = torch.FloatTensor([[0, 0.2, 0.7, 0.1, 0],
-
[0, 0.2, 0.7, 0.1, 0],
-
[0, 0.2, 0.7, 0.1, 0]])
-
v = crit(Variable(predict.log()),
-
Variable(torch.LongTensor([2, 1, 0])))
-
# Show the target distributions expected by the system.
-
plt.imshow(crit.true_dist)
-
None
如果對給定的選擇非常有信心,標籤平滑實際上會開始懲罰模型。
crit = LabelSmoothing(5, 0, 0.1) def loss(x): d = x + 3 * 1 predict = torch.FloatTensor([[0, x / d, 1 / d, 1 / d, 1 / d], ]) #print(predict) return crit(Variable(predict.log()), Variable(torch.LongTensor([1]))).data[0] plt.plot(np.arange(1, 100), [loss(x) for x in range(1, 100)]) None
第一個例子
我們可以先嚐試一個簡單的複製任務。 給定來自小詞彙表的隨機輸入符號集,目標是生成那些相同的符號。
資料生成
def data_gen(V, batch, nbatches): "Generate random data for a src-tgt copy task." for i in range(nbatches): data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10))) data[:, 0] = 1 src = Variable(data, requires_grad=False) tgt = Variable(data, requires_grad=False) yield Batch(src, tgt, 0)
損失計算
class SimpleLossCompute: "A simple loss compute and train function." def __init__(self, generator, criterion, opt=None): self.generator = generator self.criterion = criterion self.opt = opt def __call__(self, x, y, norm): x = self.generator(x) loss = self.criterion(x.contiguous().view(-1, x.size(-1)), y.contiguous().view(-1)) / norm loss.backward() if self.opt is not None: self.opt.step() self.opt.optimizer.zero_grad() return loss.data[0] * norm
貪心解碼
-
# Train the simple copy task.
-
V = 11
-
criterion = LabelSmoothing(size=V, padding_idx=0, smoothing=0.0)
-
model = make_model(V, V, N=2)
-
model_opt = NoamOpt(model.src_embed[0].d_model, 1, 400,
-
torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
-
for epoch in range(10):
-
model.train()
-
run_epoch(data_gen(V, 30, 20), model,
-
SimpleLossCompute(model.generator, criterion, model_opt))
-
model.eval()
-
print(run_epoch(data_gen(V, 30, 5), model,
-
SimpleLossCompute(model.generator, criterion, None)))
Epoch Step: 1 Loss: 3.023465 Tokens per Sec: 403.074173 Epoch Step: 1 Loss: 1.920030 Tokens per Sec: 641.689380 1.9274832487106324 Epoch Step: 1 Loss: 1.940011 Tokens per Sec: 432.003378 Epoch Step: 1 Loss: 1.699767 Tokens per Sec: 641.979665 1.657595729827881 Epoch Step: 1 Loss: 1.860276 Tokens per Sec: 433.320240 Epoch Step: 1 Loss: 1.546011 Tokens per Sec: 640.537198 1.4888023376464843 Epoch Step: 1 Loss: 1.682198 Tokens per Sec: 432.092305 Epoch Step: 1 Loss: 1.313169 Tokens per Sec: 639.441857 1.3485562801361084 Epoch Step: 1 Loss: 1.278768 Tokens per Sec: 433.568756 Epoch Step: 1 Loss: 1.062384 Tokens per Sec: 642.542067 0.9853351473808288 Epoch Step: 1 Loss: 1.269471 Tokens per Sec: 433.388727 Epoch Step: 1 Loss: 0.590709 Tokens per Sec: 642.862135 0.5686767101287842 Epoch Step: 1 Loss: 0.997076 Tokens per Sec: 433.009746 Epoch Step: 1 Loss: 0.343118 Tokens per Sec: 642.288427 0.34273059368133546 Epoch Step: 1 Loss: 0.459483 Tokens per Sec: 434.594030 Epoch Step: 1 Loss: 0.290385 Tokens per Sec: 642.519464 0.2612409472465515 Epoch Step: 1 Loss: 1.031042 Tokens per Sec: 434.557008 Epoch Step: 1 Loss: 0.437069 Tokens per Sec: 643.630322 0.4323212027549744 Epoch Step: 1 Loss: 0.617165 Tokens per Sec: 436.652626 Epoch Step: 1 Loss: 0.258793 Tokens per Sec: 644.372296 0.27331129014492034
為簡單起見,此程式碼使用貪心解碼來預測翻譯。
-
def greedy_decode(model, src, src_mask, max_len, start_symbol):
-
memory = model.encode(src, src_mask)
-
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
-
for i in range(max_len-1):
-
out = model.decode(memory, src_mask,
-
Variable(ys),
-
Variable(subsequent_mask(ys.size(1))
-
.type_as(src.data)))
-
prob = model.generator(out[:, -1])
-
_, next_word = torch.max(prob, dim = 1)
-
next_word = next_word.data[0]
-
ys = torch.cat([ys,
-
torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
-
return ys
-
model.eval()
-
src = Variable(torch.LongTensor([[1,2,3,4,5,6,7,8,9,10]]) )
-
src_mask = Variable(torch.ones(1, 1, 10) )
print(greedy_decode(model, src, src_mask, max_len=10, start_symbol=1)) 1 2 3 4 5 6 7 8 9 10 [torch.LongTensor of size 1x10]
真實示例
現在我們通過IWSLT德語-英語翻譯任務介紹一個真實示例。 該任務比上文提及的WMT任務小得多,但它說明了整個系統。 我們還展示瞭如何使用多個GPU處理加速其訓練。
#!pip install torchtext spacy #!python -m spacy download en #!python -m spacy download de
資料載入
我們將使用torchtext和spacy載入資料集以進行詞語切分。
# For data loading. from torchtext import data, datasets if True: import spacy spacy_de = spacy.load('de') spacy_en = spacy.load('en') def tokenize_de(text): return [tok.text for tok in spacy_de.tokenizer(text)] def tokenize_en(text): return [tok.text for tok in spacy_en.tokenizer(text)] BOS_WORD = '<s>' EOS_WORD = '</s>' BLANK_WORD = "<blank>" SRC = data.Field(tokenize=tokenize_de, pad_token=BLANK_WORD) TGT = data.Field(tokenize=tokenize_en, init_token = BOS_WORD, eos_token = EOS_WORD, pad_token=BLANK_WORD) MAX_LEN = 100 train, val, test = datasets.IWSLT.splits( exts=('.de', '.en'), fields=(SRC, TGT), filter_pred=lambda x: len(vars(x)['src']) <= MAX_LEN and len(vars(x)['trg']) <= MAX_LEN) MIN_FREQ = 2 SRC.build_vocab(train.src, min_freq=MIN_FREQ) TGT.build_vocab(train.trg, min_freq=MIN_FREQ)
批訓練對於速度來說很重要。我們希望批次分割非常均勻並且填充最少。 要做到這一點,我們必須修改torchtext預設的批處理函式。 這部分程式碼修補其預設批處理函式,以確保我們搜尋足夠多的句子以構建緊密批處理。
迭代器
-
class MyIterator(data.Iterator):
-
def create_batches(self):
-
if self.train:
-
def pool(d, random_shuffler):
-
for p in data.batch(d, self.batch_size * 100):
-
p_batch = data.batch(
-
sorted(p, key=self.sort_key),
-
self.batch_size, self.batch_size_fn)
-
for b in random_shuffler(list(p_batch)):
-
yield b
-
self.batches = pool(self.data(), self.random_shuffler)
-
else:
-
self.batches = []
-
for b in data.batch(self.data(), self.batch_size,
-
self.batch_size_fn):
-
self.batches.append(sorted(b, key=self.sort_key))
-
def rebatch(pad_idx, batch):
-
"Fix order in torchtext to match ours"
-
src, trg = batch.src.transpose(0, 1), batch.trg.transpose(0, 1)
-
return Batch(src, trg, pad_idx)
多GPU訓練
最後為了真正地快速訓練,我們將使用多個GPU。 這部分程式碼實現了多GPU字生成。 它不是Transformer特有的,所以我不會詳細介紹。 其思想是將訓練時的單詞生成分成塊,以便在許多不同的GPU上並行處理。 我們使用PyTorch並行原語來做到這一點:
-
複製 - 將模組拆分到不同的GPU上
-
分散 - 將批次拆分到不同的GPU上
-
並行應用 - 在不同GPU上將模組應用於批處理
-
聚集 - 將分散的資料聚集到一個GPU上
-
nn.DataParallel - 一個特殊的模組包裝器,在評估之前呼叫它們。
# Skip if not interested in multigpu. class MultiGPULossCompute: "A multi-gpu loss compute and train function." def __init__(self, generator, criterion, devices, opt=None, chunk_size=5): # Send out to different gpus. self.generator = generator self.criterion = nn.parallel.replicate(criterion, devices=devices) self.opt = opt self.devices = devices self.chunk_size = chunk_size def __call__(self, out, targets, normalize): total = 0.0 generator = nn.parallel.replicate(self.generator, devices=self.devices) out_scatter = nn.parallel.scatter(out, target_gpus=self.devices) out_grad = [[] for _ in out_scatter] targets = nn.parallel.scatter(targets, target_gpus=self.devices) # Divide generating into chunks. chunk_size = self.chunk_size for i in range(0, out_scatter[0].size(1), chunk_size): # Predict distributions out_column = [[Variable(o[:, i:i+chunk_size].data, requires_grad=self.opt is not None)] for o in out_scatter] gen = nn.parallel.parallel_apply(generator, out_column) # Compute loss. y = [(g.contiguous().view(-1, g.size(-1)), t[:, i:i+chunk_size].contiguous().view(-1)) for g, t in zip(gen, targets)] loss = nn.parallel.parallel_apply(self.criterion, y) # Sum and normalize loss l = nn.parallel.gather(loss, target_device=self.devices[0]) l = l.sum()[0] / normalize total += l.data[0] # Backprop loss to output of transformer if self.opt is not None: l.backward() for j, l in enumerate(loss): out_grad[j].append(out_column[j][0].grad.data.clone()) # Backprop all loss through transformer. if self.opt is not None: out_grad = [Variable(torch.cat(og, dim=1)) for og in out_grad] o1 = out o2 = nn.parallel.gather(out_grad, target_device=self.devices[0]) o1.backward(gradient=o2) self.opt.step() self.opt.optimizer.zero_grad() return total * normalize
現在我們建立模型,損失函式,優化器,資料迭代器和並行化。
# GPUs to use devices = [0, 1, 2, 3] if True: pad_idx = TGT.vocab.stoi["<blank>"] model = make_model(len(SRC.vocab), len(TGT.vocab), N=6) model.cuda() criterion = LabelSmoothing(size=len(TGT.vocab), padding_idx=pad_idx, smoothing=0.1) criterion.cuda() BATCH_SIZE = 12000 train_iter = MyIterator(train, batch_size=BATCH_SIZE, device=0, repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=True) valid_iter = MyIterator(val, batch_size=BATCH_SIZE, device=0, repeat=False, sort_key=lambda x: (len(x.src), len(x.trg)), batch_size_fn=batch_size_fn, train=False) model_par = nn.DataParallel(model, device_ids=devices) None
現在我們訓練模型。 我將稍微使用預熱步驟,但其他一切都使用預設引數。 在具有4個Tesla V100 GPU的AWS p3.8xlarge機器上,每秒執行約27,000個詞,批訓練大小大小為12,000。
訓練系統
#!wget https://s3.amazonaws.com/opennmt-models/iwslt.pt
if False: model_opt = NoamOpt(model.src_embed[0].d_model, 1, 2000, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9)) for epoch in range(10): model_par.train() run_epoch((rebatch(pad_idx, b) for b in train_iter), model_par, MultiGPULossCompute(model.generator, criterion, devices=devices, opt=model_opt)) model_par.eval() loss = run_epoch((rebatch(pad_idx, b) for b in valid_iter), model_par, MultiGPULossCompute(model.generator, criterion, devices=devices, opt=None)) print(loss) else: model = torch.load("iwslt.pt")
一旦訓練完成,我們可以解碼模型以產生一組翻譯。 在這裡,我們只需翻譯驗證集中的第一個句子。 此資料集非常小,因此使用貪婪搜尋的翻譯相當準確。
for i, batch in enumerate(valid_iter): src = batch.src.transpose(0, 1)[:1] src_mask = (src != SRC.vocab.stoi["<blank>"]).unsqueeze(-2) out = greedy_decode(model, src, src_mask, max_len=60, start_symbol=TGT.vocab.stoi["<s>"]) print("Translation:", end="\t") for i in range(1, out.size(1)): sym = TGT.vocab.itos[out[0, i]] if sym == "</s>": break print(sym, end =" ") print() print("Target:", end="\t") for i in range(1, batch.trg.size(0)): sym = TGT.vocab.itos[batch.trg.data[i, 0]] if sym == "</s>": break print(sym, end =" ") print() break
Translation: <unk> <unk> . In my language , that means , thank you very much . Gold: <unk> <unk> . It means in my language , thank you very much .
附加元件:BPE,搜尋,平均
所以這主要涵蓋了Transformer模型本身。 有四個方面我們沒有明確涵蓋。 我們還實現了所有這些附加功能 OpenNMT-py[3].
1) 位元組對編碼/ 字片(Word-piece):我們可以使用庫來首先將資料預處理為子字單元。參見Rico Sennrich的subword-nmt實現[4]。這些模型將訓練資料轉換為如下所示:
▁Die ▁Protokoll datei ▁kann ▁ heimlich ▁per ▁E - Mail ▁oder ▁FTP ▁an ▁einen ▁bestimmte n ▁Empfänger ▁gesendet ▁werden .
2) 共享嵌入:當使用具有共享詞彙表的BPE時,我們可以在源/目標/生成器之間共享相同的權重向量,詳細見[5]。 要將其新增到模型,只需執行以下操作:
if False: model.src_embed[0].lut.weight = model.tgt_embeddings[0].lut.weight model.generator.lut.weight = model.tgt_embed[0].lut.weight
3) 集束搜尋:這裡展開說有點太複雜了。 PyTorch版本的實現可以參考 OpenNMT- py[6]。 4) 模型平均:這篇文章平均最後k個檢查點以建立一個集合效果。 如果我們有一堆模型,我們可以在事後這樣做:
def average(model, models): "Average models into model" for ps in zip(*[m.params() for m in [model] + models]): p[0].copy_(torch.sum(*ps[1:]) / len(ps[1:]))
結果
在WMT 2014英語-德語翻譯任務中,大型Transformer模型(表2中的Transformer(大))優於先前報告的最佳模型(包括整合的模型)超過2.0 BLEU,建立了一個新的最先進BLEU得分為28.4。 該模型的配置列於表3的底部。在8個P100 GPU的機器上,訓練需要需要3.5天。 甚至我們的基礎模型也超過了之前釋出的所有模型和整合,而且只佔培訓成本的一小部分。
在WMT 2014英語-法語翻譯任務中,我們的大型模型獲得了41.0的BLEU分數,優於以前釋出的所有單一模型,不到以前最先進技術培訓成本的1/4 模型。 使用英語到法語訓練的Transformer(大)模型使用dropout概率 = 0.1,而不是0.3。
Image(filename="images/results.png")
我們在這裡編寫的程式碼是基本模型的一個版本。 這裡有系統完整訓練的版本 (Example Models[7]).
通過上一節中的附加擴充套件,OpenNMT-py複製在EN-DE WMT上達到26.9。 在這裡,我已將這些引數載入到我們的重新實現中。
!wget https://s3.amazonaws.com/opennmt-models/en-de-model.pt
model, SRC, TGT = torch.load("en-de-model.pt")
model.eval() sent = "▁The ▁log ▁file ▁can ▁be ▁sent ▁secret ly ▁with ▁email ▁or ▁FTP ▁to ▁a ▁specified ▁receiver".split() src = torch.LongTensor([[SRC.stoi[w] for w in sent]]) src = Variable(src) src_mask = (src != SRC.stoi["<blank>"]).unsqueeze(-2) out = greedy_decode(model, src, src_mask, max_len=60, start_symbol=TGT.stoi["<s>"]) print("Translation:", end="\t") trans = "<s> " for i in range(1, out.size(1)): sym = TGT.itos[out[0, i]] if sym == "</s>": break trans += sym + " " print(trans)
Translation: <s> ▁Die ▁Protokoll datei ▁kann ▁ heimlich ▁per ▁E - Mail ▁oder ▁FTP ▁an ▁einen ▁bestimmte n ▁Empfänger ▁gesendet ▁werden .
注意力視覺化
即使使用貪婪的解碼器,翻譯看起來也不錯。 我們可以進一步想象它,看看每一層注意力發生了什麼。
tgt_sent = trans.split() def draw(data, x, y, ax): seaborn.heatmap(data, xticklabels=x, square=True, yticklabels=y, vmin=0.0, vmax=1.0, cbar=False, ax=ax) for layer in range(1, 6, 2): fig, axs = plt.subplots(1,4, figsize=(20, 10)) print("Encoder Layer", layer+1) for h in range(4): draw(model.encoder.layers[layer].self_attn.attn[0, h].data, sent, sent if h ==0 else [], ax=axs[h]) plt.show() for layer in range(1, 6, 2): fig, axs = plt.subplots(1,4, figsize=(20, 10)) print("Decoder Self Layer", layer+1) for h in range(4): draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(tgt_sent)], tgt_sent, tgt_sent if h ==0 else [], ax=axs[h]) plt.show() print("Decoder Src Layer", layer+1) fig, axs = plt.subplots(1,4, figsize=(20, 10)) for h in range(4): draw(model.decoder.layers[layer].self_attn.attn[0, h].data[:len(tgt_sent), :len(sent)], sent, tgt_sent if h ==0 else [], ax=axs[h]) plt.show()
Encoder Layer 2
Encoder Layer 4
Encoder Layer 6
Decoder Self Layer 2
Decoder Src Layer 2
Decoder Self Layer 4
Decoder Src Layer 4
Decoder Self Layer 6
Decoder Src Layer 6
結論
希望這段程式碼對未來的研究很有用。 如果您有任何問題,請與我們聯絡。 如果您發現此程式碼有用,請檢視我們的其他OpenNMT工具。
@inproceedings{opennmt, author = {Guillaume Klein and Yoon Kim and Yuntian Deng and Jean Senellart and Alexander M. Rush}, title = {OpenNMT: Open-Source Toolkit for Neural Machine Translation}, booktitle = {Proc. ACL}, year = {2017}, url = {https://doi.org/10.18653/v1/P17-4012}, doi = {10.18653/v1/P17-4012} }
Cheers,srush
參考連結
[1] https://arxiv.org/abs/1412.6980
[2] https://arxiv.org/abs/1512.00567
[3] https://github.com/opennmt/opennmt-py
[4] https://github.com/rsennrich/subword-nmt
[5] https://arxiv.org/abs/1608.05859
[6] https://github.com/OpenNMT/OpenNMT-py/blob/master/onmt/translate/Beam.py
[7] http://opennmt.net/Models-py/