線性代數 Cheat Sheet 5-1:特徵向量與特徵值
儘管變換 $\boldsymbol x \mapsto A \boldsymbol x$ 有可能使向量往各個方向移動,但通常會有某些特殊向量,$A$ 對這些向量的作用是簡單的。 定義$A$ 為 $n \t
儘管變換 $\boldsymbol x \mapsto A \boldsymbol x$ 有可能使向量往各個方向移動,但通常會有某些特殊向量,$A$ 對這些向量的作用是簡單的。 定義$A$ 為 $n \t
設 $\mathbb{S}$ 是數的雙向無窮序列空間: \begin{equation} {y_k} = (\cdots, y_{-2}, y_{-1}, y_0, y_1, y_2, \cd
設想一個填充滿隨機數的 $40 \times 50$ 矩陣 $A$,$A$ 中線性無關列的最大個數和 $A^\mathsf{T}$ 中線性無關列的最大個數($A$ 中線性無關行的最大個數)是相同的,這個公共值是
定理 8 蘊含向量空間 $V$ 的基 $\mathcal{B}$ 若含有 $n$ 個向量,則 $V$ 與 $\mathbb{R}^n$ 同構。數 $n$ 是 $V$ 的一個內在性質(稱為維數),不依賴基的選擇
對於 $V$ 中向量的一個指標集 $\{\boldsymbol v_1, \cdots, \boldsymbol v_p\}$,如果 \begin{equation} c_1 \boldsym
線上性代數的應用中,$\mathbb{R}^n$ 的子空間通常由以下兩種方式產生:(1)作為齊次線性方程組的解集;(2)作為某些確定向量的線性組合的集合。 Contents 1. 矩陣的零空間
線性迴歸可能是機器學習中最簡單、最基礎的演算法了。但一定不要因為它簡單就輕視它的存在,因為它也是很多更高階機器學習演算法的基礎,比如多項式迴歸、嶺迴歸、 LASSO 迴歸等。線性迴歸的核心歸結為求解正規方程(由
線性迴歸方程式與線性系統 本章節的內容涉及線性代數的知識,讀者應該先去了解,如不瞭解也可略過本章,無影響 Gaussian Elimination 線上性代數中我們解方程組的辦法一般都是用高斯消去法
下面我們舉一個簡單的線性迴歸的例子來說明實際的反向傳播和梯度下降的過程。完全看懂此文後,會對理解後續的文章有很大的幫助。 為什麼要用線性迴歸舉例呢?因為 \(y = wx+b\) (其中,y,w,x,b都
邏輯迴歸案例 小細節 邏輯迴歸(logistic regression)雖然被稱之為邏輯迴歸,但是它本質上其實是一種分類演算法(classification algorithm),邏輯迴歸名字的
對於一個 $n \times n$ 的矩陣 $A$,若存在一個 $n \times n$ 的矩陣 $C$,使 \begin{equation} CA = I \; 且 \; AC = I
數學是機器學習的基礎。斯坦福大學教授 Stephen Boyd 聯合加州大學洛杉磯分校的 Lieven Vandenberghe 教授出版了一本基礎數學書籍,從向量到最小二乘法,分三部分進行講解並配以輔
本文基於日常運維工作中遇到的問題,從人類直覺和數學工具幾個方面提供了預測的方法。 上篇文章回顧:從Minos部署系統談談XML-RPC
機器學習 一般來說,一個學習問題通常會考慮一系列 n 個 樣本 資料,然後嘗試預測未知資料的屬性。 如果每個樣本是 多個屬性的資料,比如說是一個多維記錄),就說它有許多“屬性”,或稱 features(特
在幾年之前,我踏進了資料科學的大門。之前還是軟體工程師的時候,我是最先開始在網上自學的(在開始我的碩士學位之前)。我記得當我搜集網上資源的時候,我看見的只有玲琅滿目的演算法名稱—線性迴歸,支援向量機(SVM),