1. 程式人生 > >洛谷5月月賽T30212 玩遊戲 【分治NTT + 多項式求ln】

洛谷5月月賽T30212 玩遊戲 【分治NTT + 多項式求ln】

LG AI getchar make DG mit pla con 形式

題目鏈接

洛谷T30212

題解

式子很容易推出來,二項式定理展開後對於\(k\)的答案即可化簡為如下:
\[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_{x = 1}^{n} a_x^{i}}{i!} \centerdot \frac{\sum\limits_{x = 1}^{n} b_x^{k - i}}{(k - i)!})\]
是一個卷積的形式
我們只需對所有\(k\)預處理出\(\sum\limits_{i = 1}^{n} a_i^{k}\)\(b\)也是類似的

月賽時並不會,暴力預處理便滾粗了,,

考慮泰勒展開,有這樣一個式子:
\[ln(1 + x) = \sum\limits_{i = 0}^{\infty} (-1)^{i} \frac{x^{i + 1}}{i + 1}\]


我們令\(x = ax\)

\[ln(1 + ax) = \sum\limits_{i = 0}^{\infty} (-1)^{i} \frac{a^{i + 1}}{i + 1}x^{i + 1}\]
出現了我們想要的\(a_i^{k}\)
我們只需求出
\[\sum\limits_{i = 1}^{n} ln(1 + a_ix) = ln(\prod\limits_{i = 1}^{n} (1 + a_ix))\]
\(x^k\)對應的系數就是\(\frac{(-1)^{k - 1}\sum\limits_{i = 1}^{n}a_i^{k}}{k}\)

分治\(NTT\) + 多項式求\(ln\)

即可
復雜度\(O(nlog^2n)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s)) #define cp pair<int,int> #define LL long long int using namespace std; const int maxn = 400005,maxm = 100005,INF = 1000000000; inline int read(){ int out = 0,flag = 1; char c = getchar(); while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();} while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();} return out * flag; } const int G = 3,P = 998244353; int R[maxn]; inline int qpow(int a,LL b){ int re = 1; for (; b; b >>= 1,a = 1ll * a * a % P) if (b & 1) re = 1ll * re * a % P; return re; } void NTT(int* a,int n,int f){ for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]); for (int i = 1; i < n; i <<= 1){ int gn = qpow(G,(P - 1) / (i << 1)); for (int j = 0; j < n; j += (i << 1)){ int g = 1,x,y; for (int k = 0; k < i; k++,g = 1ll * g * gn % P){ x = a[j + k],y = 1ll * g * a[j + k + i] % P; a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P; } } } if (f == 1) return; int nv = qpow(n,P - 2); reverse(a + 1,a + n); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P; } int n,m,a[maxn],b[maxn],c[maxn],A[maxn],B[maxn],cv[maxn],N; int fac[maxn],fv[maxn],inv[maxn]; void init(){ fac[0] = fac[1] = fv[0] = fv[1] = inv[0] = inv[1] = 1; for (int i = 2; i <= 100000; i++){ fac[i] = 1ll * fac[i - 1] * i % P; inv[i] = 1ll * (P - P / i) * inv[P % i] % P; fv[i] = 1ll * fv[i - 1] * inv[i] % P; } } int F[30][maxn],deg[maxn],cnt; void solve(int l,int r){ if (l == r){ deg[++cnt] = 1; F[cnt][0] = 1; F[cnt][1] = c[l]; return; } int mid = l + r >> 1; solve(l,mid); solve(mid + 1,r); int n = 1,L = 0,a = cnt - 1,b = cnt,m = deg[a] + deg[b]; while (n <= m) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = deg[a] + 1; i < n; i++) F[a][i] = 0; for (int i = deg[b] + 1; i < n; i++) F[b][i] = 0; NTT(F[a],n,1); NTT(F[b],n,1); for (int i = 0; i < n; i++) F[a][i] = 1ll * F[a][i] * F[b][i] % P; NTT(F[a],n,-1); cnt--; deg[cnt] = m; for (int i = m + 1; i < n; i++) F[cnt][i] = 0; } void Der(int* a,int n){ for (int i = 0; i < n; i++) a[i] = 1ll * a[i + 1] * (i + 1) % P; a[n] = 0; } void Int(int* a,int n){ for (int i = n + 1; i; i--) a[i] = 1ll * a[i - 1] * inv[i] % P; a[0] = 0; } void Inv(int* a,int* b,int deg){ if (deg == 1){b[0] = qpow(a[0],P - 2); return;} Inv(a,b,(deg + 1) >> 1); int n = 1,L = 0; while (n < (deg << 1)) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = 0; i < deg; i++) c[i] = a[i]; for (int i = deg; i < n; i++) c[i] = 0; NTT(c,n,1); NTT(b,n,1); for (int i = 0; i < n; i++) b[i] = 1ll * ((2ll - 1ll * b[i] * c[i] % P) % P + P) % P * b[i] % P; NTT(b,n,-1); for (int i = deg; i < n; i++) b[i] = 0; } void Getln(int* a,int* b,int deg){ Inv(a,cv,deg); Der(a,deg); int n = 1,L = 0; while (n <= (deg << 1)) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = deg; i < n; i++) a[i] = 0; NTT(a,n,1); NTT(cv,n,1); for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * cv[i] % P; NTT(a,n,-1); for (int i = 0; i <= deg; i++) b[i] = a[i]; Int(b,deg); } int main(){ init(); n = read(); m = read(); int v = qpow(1ll * n * m % P,P - 2); REP(i,n) a[i] = read(); REP(i,m) b[i] = read(); N = read(); REP(i,n) c[i] = a[i]; solve(1,n); //REP(i,n) printf("%d ",F[1][i]); puts(""); for (int i = n + 1; i <= N; i++) F[1][i] = 0; Getln(F[1],A,N); for (int i = 1; i <= N; i++){ if (!(i & 1)) A[i] = P - A[i]; A[i] = 1ll * A[i] * i % P * fv[i] % P; } //REP(i,N) printf("%d ",A[i]); puts(""); A[0] = n; cls(cv); REP(i,m) c[i] = b[i]; cnt = 0; solve(1,m); for (int i = m + 1; i <= N; i++) F[1][i] = 0; Getln(F[1],B,N); for (int i = 1; i <= N; i++){ if (!(i & 1)) B[i] = P - B[i]; B[i] = 1ll * B[i] * i % P * fv[i] % P; } //REP(i,N) printf("%d ",B[i]); puts(""); B[0] = m; int n = 1,L = 0; while (n <= (N << 1)) n <<= 1,L++; for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1)); for (int i = N + 1; i < n; i++) A[i] = B[i] = 0; NTT(A,n,1); NTT(B,n,1); for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P; NTT(A,n,-1); for (int i = 1; i <= N; i++) printf("%lld\n",1ll * A[i] * fac[i] % P * v % P); return 0; }

洛谷5月月賽T30212 玩遊戲 【分治NTT + 多項式求ln】