1. 程式人生 > >雙目立體視覺匹配演算法之視差圖disparity計算——SAD演算法、SGBM演算法

雙目立體視覺匹配演算法之視差圖disparity計算——SAD演算法、SGBM演算法

一、SAD演算法

1.演算法原理
        SAD(Sum of absolute differences)是一種影象匹配演算法。基本思想:差的絕對值之和。此演算法常用於影象塊匹配,將每個畫素對應數值之差的絕對值求和,據此評估兩個影象塊的相似度。該演算法快速、但並不精確,通常用於多級處理的初步篩選。

2.基本流程

輸入:兩幅影象,一幅Left-Image,一幅Right-Image

對左圖,依次掃描,選定一個錨點:

(1)構造一個小視窗,類似於卷積核;
(2)用視窗覆蓋左邊的影象,選擇出視窗覆蓋區域內的所有畫素點;
(3)同樣用視窗覆蓋右邊的影象並選擇出覆蓋區域的畫素點;
(4)左邊覆蓋區域減去右邊覆蓋區域,並求出所有畫素點灰度差的絕對值之和;
(5)移動右邊影象的視窗,重複(3)-(4)的處理(這裡有個搜尋範圍,超過這個範圍跳出);
(6)找到這個範圍內SAD值最小的視窗,即找到了左圖錨點的最佳匹配的畫素塊。

3、程式碼

#include<iostream>
#include<opencv2/opencv.hpp>

using namespace std;
using namespace cv;


class SAD
{
private:
	int winSize;//卷積核尺寸
	int DSR;//視差搜尋範圍
public:
	SAD() :winSize(7), DSR(30){}
	SAD(int _winSize, int _DSR) :winSize(_winSize), DSR(_DSR){}
	Mat computerSAD(Mat&L, Mat&R);//計算SAD
};

Mat SAD::computerSAD(Mat&L, Mat&R)
{
	int Height = L.rows;
	int Width = L.cols;
	Mat Kernel_L(Size(winSize, winSize), CV_8U, Scalar::all(0));
	//CV_8U:0~255的值,大多數影象/視訊的格式,該段設定全0矩陣
	Mat Kernel_R(Size(winSize, winSize), CV_8U, Scalar::all(0));
	Mat Disparity(Height, Width, CV_8U, Scalar(0));


	for (int i = 0; i < Width - winSize; ++i){
		for (int j = 0; j < Height - winSize; ++j){
			Kernel_L = L(Rect(i, j, winSize, winSize));//L為做影象,Kernel為這個範圍內的左圖
			Mat MM(1, DSR, CV_32F, Scalar(0));//定義匹配範圍

			for (int k = 0; k < DSR; ++k){
				int x = i - k;
				if (x >= 0){
					Kernel_R = R(Rect(x, j, winSize, winSize));
					Mat Dif;
					absdiff(Kernel_L, Kernel_R, Dif);
					Scalar ADD = sum(Dif);
					float a = ADD[0];
					MM.at<float>(k) = a;
				}
				Point minLoc;
				minMaxLoc(MM, NULL, NULL, &minLoc, NULL);

				int loc = minLoc.x;
				Disparity.at<char>(j, i) = loc * 16;
			}
			double rate = double(i) / (Width);
			cout << "已完成" << setprecision(2) << rate * 100 << "%" << endl;
		}
	}
	return Disparity;
}

int main()
{
	Mat left = imread("Left.png");
	Mat right = imread("Right.png");
	//-------影象顯示-----------
	namedWindow("leftimag");
	imshow("leftimag", left);

	namedWindow("rightimag");
	imshow("rightimag", right);
	//--------由SAD求取視差圖-----
	Mat Disparity;

	SAD mySAD(7, 30);
	Disparity = mySAD.computerSAD(left, right);
	//-------結果顯示------
	namedWindow("Disparity");
	imshow("Disparity", Disparity);
	//-------收尾------
	waitKey(0);
	return 0;
}

4、結果

左圖:

右圖:

視差圖結果:

二、SGBM演算法

1、SGBM演算法作為一種全域性匹配演算法,立體匹配的效果明顯好於區域性匹配演算法,但是同時複雜度上也要遠遠大於區域性匹配演算法。演算法主要是參考Stereo Processing by Semiglobal Matching and Mutual Information。

opencv中實現的SGBM演算法計算匹配代價沒有按照原始論文的互資訊作為代價,而是按照塊匹配的代價。

對該演算法的具體講解可以參考:https://www.cnblogs.com/hrlnw/p/4746170.html

參考:http://www.opencv.org.cn/forum.php?mod=viewthread&tid=23854

2、程式碼

#include<iostream>
#include<opencv2/opencv.hpp>

using namespace std;
using namespace cv;


class SGBM
{
private:
	enum mode_view { LEFT, RIGHT };
	mode_view view;	//輸出左視差圖or右視差圖

public:
	SGBM() {};
	SGBM(mode_view _mode_view) :view(_mode_view) {};
	~SGBM() {};
	Mat computersgbm(Mat &L, Mat &R);	//計算SGBM
};

Mat SGBM::computersgbm(Mat &L, Mat &R)
/*SGBM_matching SGBM演算法
*@param Mat &left_image :左影象
*@param Mat &right_image:右影象
*/
{
	Mat disp;

	int numberOfDisparities = ((L.size().width / 8) + 15)&-16;
	Ptr<StereoSGBM> sgbm = StereoSGBM::create(0, 16, 3);
	sgbm->setPreFilterCap(32);

	int SADWindowSize = 5;
	int sgbmWinSize = SADWindowSize > 0 ? SADWindowSize : 3;
	sgbm->setBlockSize(sgbmWinSize);
	int cn = L.channels();

	sgbm->setP1(8 * cn*sgbmWinSize*sgbmWinSize);
	sgbm->setP2(32 * cn*sgbmWinSize*sgbmWinSize);
	sgbm->setMinDisparity(0);
	sgbm->setNumDisparities(numberOfDisparities);
	sgbm->setUniquenessRatio(10);
	sgbm->setSpeckleWindowSize(100);
	sgbm->setSpeckleRange(32);
	sgbm->setDisp12MaxDiff(1);


	Mat left_gray, right_gray;
	cvtColor(L, left_gray, CV_BGR2GRAY);
	cvtColor(R, right_gray, CV_BGR2GRAY);

	view = LEFT;
	if (view == LEFT)	//計算左視差圖
	{
		sgbm->compute(left_gray, right_gray, disp);

		disp.convertTo(disp, CV_32F, 1.0 / 16);			//除以16得到真實視差值

		Mat disp8U = Mat(disp.rows, disp.cols, CV_8UC1);
		normalize(disp, disp8U, 0, 255, NORM_MINMAX, CV_8UC1);
		imwrite("results/SGBM.jpg", disp8U);

		return disp8U;
	}
	else if (view == RIGHT)	//計算右視差圖
	{
		sgbm->setMinDisparity(-numberOfDisparities);
		sgbm->setNumDisparities(numberOfDisparities);
		sgbm->compute(left_gray, right_gray, disp);

		disp.convertTo(disp, CV_32F, 1.0 / 16);			//除以16得到真實視差值

		Mat disp8U = Mat(disp.rows, disp.cols, CV_8UC1);
		normalize(disp, disp8U, 0, 255, NORM_MINMAX, CV_8UC1);
		imwrite("results/SGBM.jpg", disp8U);

		return disp8U;
	}
	else
	{
		return Mat();
	}
}


int main()
{
	Mat left = imread("Left.png");
	Mat right = imread("Right.png");
	//-------影象顯示-----------
	namedWindow("leftimag");
	imshow("leftimag", left);

	namedWindow("rightimag");
	imshow("rightimag", right);
	//--------由SAD求取視差圖-----
	Mat Disparity;

	SGBM mySGBM;
	Disparity = mySGBM.computersgbm(left, right);

	//-------結果顯示------
	namedWindow("Disparity");
	imshow("Disparity", Disparity);
	//-------收尾------
	waitKey(0);
	return 0;
}

3、結果

所用的左右圖同上,所得結果為:

 

 

 

NB:對於使用的其他演算法本次沒有實驗,故沒有介紹,可以參考:https://blog.csdn.net/liulina603/article/details/53302168