1. 程式人生 > >分散式ID 雪花演算法JAVA實現

分散式ID 雪花演算法JAVA實現

少年不想寫,來吧:https://github.com/singgel/SnowFlake

snowflake的結構如下(每部分用-分開):

概述

分散式系統中,有一些需要使用全域性唯一ID的場景,這種時候為了防止ID衝突可以使用36位的UUID,但是UUID有一些缺點,首先他相對比較長,另外UUID一般是無序的。

有些時候我們希望能使用一種簡單一些的ID,並且希望ID能夠按照時間有序生成。

而twitter的snowflake解決了這種需求,最初Twitter把儲存系統從MySQL遷移到Cassandra,因為Cassandra沒有順序ID生成機制,所以開發了這樣一套全域性唯一ID生成服務。

結構

snowflake的結構如下(每部分用-分開):

0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000

第一位為未使用,接下來的41位為毫秒級時間(41位的長度可以使用69年),然後是5位datacenterId和5位workerId(10位的長度最多支援部署1024個節點) ,最後12位是毫秒內的計數(12位的計數順序號支援每個節點每毫秒產生4096個ID序號)

一共加起來剛好64位,為一個Long型。(轉換成字串長度為18)

snowflake生成的ID整體上按照時間自增排序,並且整個分散式系統內不會產生ID碰撞(由datacenter和workerId作區分),並且效率較高。據說:snowflake每秒能夠產生26萬個ID。

本機實測:100萬個ID 耗時5秒

/**
 * 描述: Twitter的分散式自增ID雪花演算法snowflake (Java版)
 *
 * @author yanpenglei
 * @create 2018-03-13 12:37
 **/
public class SnowFlake {

    /**
     * 起始的時間戳
     */
    private final static long START_STMP = 1480166465631L;

    /**
     * 每一部分佔用的位數
     */
    private final static long SEQUENCE_BIT = 12; //序列號佔用的位數
    private final static long MACHINE_BIT = 5;   //機器標識佔用的位數
    private final static long DATACENTER_BIT = 5;//資料中心佔用的位數

    /**
     * 每一部分的最大值
     */
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

    /**
     * 每一部分向左的位移
     */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

    private long datacenterId;  //資料中心
    private long machineId;     //機器標識
    private long sequence = 0L; //序列號
    private long lastStmp = -1L;//上一次時間戳

    public SnowFlake(long datacenterId, long machineId) {
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }

    /**
     * 產生下一個ID
     *
     * @return
     */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }

        if (currStmp == lastStmp) {
            //相同毫秒內,序列號自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列數已經達到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不同毫秒內,序列號置為0
            sequence = 0L;
        }

        lastStmp = currStmp;

        return (currStmp - START_STMP) << TIMESTMP_LEFT //時間戳部分
                | datacenterId << DATACENTER_LEFT       //資料中心部分
                | machineId << MACHINE_LEFT             //機器標識部分
                | sequence;                             //序列號部分
    }

    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }

    private long getNewstmp() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake(2, 3);

        long start = System.currentTimeMillis();
        for (int i = 0; i < 1000000; i++) {
            System.out.println(snowFlake.nextId());
        }

        System.out.println(System.currentTimeMillis() - start);


    }
}