1. 程式人生 > >【 筆記 】定位演算法效能分析

【 筆記 】定位演算法效能分析

目錄

1 CRLB Computation

2 Mean and Variance Analysis


PERFORMANCE ANALYSIS FOR LOCALIZATION ALGORITHMS

CRLB給出了使用相同資料的任何無偏估計可獲得的方差的下界,因此它可以作為與定位演算法的均方誤差(MSE)進行比較的重要基準。 然而,有偏估計的MSE可能小於CRLB。

在第1節中提供了在存在高斯噪聲的情況下使用TOA測量進行CRLB計算的過程。 在第2節中,我們給出了定位估計量的理論均值和MSE表示式,其推導基於成本函式的最小化或最大化。

1 CRLB Computation

生成CRLB的關鍵是構造相應的Fisher資訊矩陣(FIM)。 FIM逆的對角元素是可實現的最小方差值。 考慮公式2.1的一般測量模型,使用以下步驟總結計算CRLB的標準程式:

或者,當測量誤差為零 - 均值高斯分佈時,I(x)也可以計算為[20]

where C denotes the covariance matrix for n . We now utilize Equation 2.154 to determine the FIMs for positioning with TOA  measure -ments based on Equations 2.8 and their associated noise covariance matrices, respectively. The FIM based on TOA measurements of Equation 2.5 , denoted by\bold{I_{TOA}(x)}

 , is

注:

It is straightforward to show that

Employing Equations 2.156 and 2.11 , Equation 2.155 becomes

注:


2 Mean and Variance Analysis

When the position estimator corresponds to minimizing or maximizing a continuous cost function, the mean and MSE expressions of \bold{\hat x}

can be produced with the use of Taylor ’ s series expansion as follows [25] . Let  \bold{J(\tilde x)} be a general continuous function of \bold{\tilde x} and the estimate \bold{\hat x} is given by its minimum or maximum. This implies that

當位置估計器對應於最小化或最大化連續成本函式時,\bold{\hat x} 的均值和MSE表示式可以使用泰勒級數展開產生如下[25]。 設 \bold{J(\tilde x)} 是 \bold{\tilde x} 的一般連續函式,估計 \bold{\hat x} 由其最小值或最大值給出。 這意味著

At small estimation error conditions, such that \bold{\hat x} is located at a reasonable proximity of the ideal solution of x , using Taylor ’ s series to expand Equation 2.165 around up to the first - order terms, we have

在小的估計誤差條件下,使得 \bold{\hat x} 位於x 的理想解的合理接近處,使用泰勒級數將公式2.165擴充套件到 x 到一階項,我們有

where \bold{H(J(x))} and \bold{ \triangledown (J(x))} are the corresponding Hessian matrix and gradient vector evaluated at the true location. When the second- order derivatives inside the Hessian matrix are smooth enough around x , we have [29] :

其中\bold{H(J(x))}\bold{ \triangledown (J(x))}是在真實位置評估的相應Hessian矩陣和梯度向量。 當Hessian矩陣內的二階導數在 周圍足夠平滑時,我們有[29]:

Employing Equation 2.167 and taking the expected value of Equation 2.166 yield the mean of \bold{\hat x}:

採用公式2.167並取公式2.166的預期值得出\bold{\hat x}平均值:

When \bold{\hat x} is an unbiased estimate of x , E\{\bold{\hat x}\} = \bold x  indicating that the last term in Equation 2.168 is a zero vector.

式子2.168的後半部分是零向量。由於Hessian的逆不為零,那麼梯度向量為零。

Utilizing Equations 2.166 and 2.167 again and the symmetric property of the Hessian matrix, we obtain the covariance for \bold{\hat x}  denoted by \bold{C_x}

that is, the variances of the estimates of x and y are given by [\bold{C_x}]_{1,1} and [\bold{C_x}]_{2,2} , respectively.

對角線上的數是x,y的方差。

下面是具體的例項,以ML為例:

We first take the ML cost function for TOA-based positioning in Equation 2.59 , namely,  \bold{J}_{ML,TOA}(\bold{\tilde x}) , as an illustration. As E{r_{TOA,l}}= d_l , the expected value of \bold{H(J_{ML,TOA}(x))} can be easily determined with the use of Equations 2.61 – 2.64 as

注:


On the other hand, the expected value of \triangledown (\bold{J_{ML,TOA}(x)}) is

注:

 

這意味著ML估計在其方差達到公式2.158中的CRLB的意義上是最優的。

均值和方差表示式也可以應用於線性方法,其對應於二次成本函式的最小化。 考慮公式2.119中的WLLS成本函式,相應的Hessian矩陣和梯度向量確定為

 


總體看來,挺困難的一些公式