1. 程式人生 > >【深度學習基礎1】神經網路基礎--邏輯迴歸

【深度學習基礎1】神經網路基礎--邏輯迴歸

 

本博文根據 coursera 吳恩達 深度學習整理。作為理解神經網路的基礎。

一、知識點

       深度學習本質上是對資料的一種擬合。使用非線性的函式集合作為模型,對樣本對進行損失最小的模擬。首先理解單個神經元的作用和原理,可以從最簡單的邏輯迴歸開始。

1) 首先,我們進行符號表示的說明:

樣本對:(x,y),訓練樣本共m個,x表示樣本,y表示分類結果。

其中x\in \mathbb{R}^{n_x}, x有 n_x 個特徵;由於是二分類問題,y \in \left \{ 0,1 \right \}

因而資料可表示為 data: \left \{ (x^1,y^1), (x^2,y^2),\left....... \right ,(x^m,y^m)\right \}

 

2) 瞭解一下sigmoid函式的特徵:

sigmoid 函式: \sigma (z)= \frac{e^{z}}{1+e^{z}}

偏導:\frac{\partial \sigma }{\partial z} = \sigma(z)(1-\sigma(z))

函式影象:從影象中可以看出,當z無窮大或無窮小時,函式值均接近1,梯度接近於0

3)邏輯迴歸損失函式:

L(\widehat{y},y) = -(ylog\widehat{y}+(1-y)log(1-\widehat{y}))

當統計m個樣本的cost function時:

J(\widehat{y},y) = -\frac{1}{m}\sum_{i=1}^{m}(y^ilog\widehat{y}^i+(1-y^i)log(1-\widehat{y}^i))

 

二、訓練過程

正向傳播:

z=w^Tx+b

\widehat{y}=a=\sigma(z)

z=np.dot(w.T,x)+b
A=sigma(z)

反向傳播:

da = \frac{\partial L}{\partial a}=-\frac{y}{\widehat{y}}+\frac{1-y}{1-\widehat{y}} = -\frac{y}{a}+\frac{1-y}{1-a}

dz = \frac{\partial L}{\partial a}\cdot \frac{\partial a}{\partial z}=(-\frac{y}{a}+\frac{1-y}{1-a})(a(1-a))=a-y

dw_1 = \frac{\partial L}{\partial a}\cdot \frac{\partial a}{\partial z}\cdot \frac{\partial z}{\partial w_1}=x_1(a-y)

dw_2 = \frac{\partial L}{\partial a}\cdot \frac{\partial a}{\partial z}\cdot \frac{\partial z}{\partial w_2}=x_2(a-y)

db = \frac{\partial L}{\partial a}\cdot \frac{\partial a}{\partial z}\cdot \frac{\partial z}{\partial b}=1\cdot (a-y)=a-y

向量化:

dz = A-Y

dw=x\cdot dz^T

db=A-Y

梯度更新:

w:=w-\alpha dw

b:=b-\alpha db

dz = A - T
dw = 1.0/m * np.dot(X,dz.T)
db = 1.0/m * np.sum(dz)
w = w - alpha * dw
b = b - alpha * db

三、例項(Logistic Regression with a Neural Network mindset)整理版本

1)引入必要的包和檔案

#coding=utf-8
import matplotlib.pyplot as plt
import h5py
import numpy as np
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset
import pylab

2)pre-processing

Common steps for pre-processing a new dataset are: 
1. Figure out the dimensions and shapes of the problem (m_train, m_test, num_px, ...) 
2. Reshape the datasets such that each example is now a vector of size (num_px * num_px * 3, 1) 
3. "Standardize" the data

 主要目的是熟悉資料(讀取並顯示),並對其做相應的處理,包括 reshape 和 standardize。

    # 讀取訓練、測試資料
    train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
    
    # m 表示樣本數量,num_px 表示輸入影象的維度即 Height/Width of each image,影象為正方形
    m_train = train_set_x_orig.shape[0]
    m_test = test_set_x_orig.shape[0]
    num_px = train_set_x_orig.shape[1]
    
    # 將單張圖片畫素拉直:最後變成 (width*height*channel, m)
    train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
    test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
    
    # 標準化
    train_set_x = train_set_x_flatten / 255.0
    test_set_x = test_set_x_flatten / 255.0

3)開始訓練

3.1 定義必要的函式

def sigmoid(x):
    """定義sigmoid函式"""
    return 1.0*np.exp(x)/(1.0+np.exp(x))

3.2 初始化

def initialize_with_zeros(dim):
    """初始化權重"""
    w,b = np.zeros((dim,1)), 0
    assert (w.shape == (dim,1))
    assert (isinstance(b,float) or isinstance(b, int))
    return w,b

3.3 定義網路

def propagate(w,b,X,Y):
    """ 前向傳播與後向傳播,單次計算 """
    m = X.shape[1]
    # FORWARD PROPAGATION (FROM X TO COST)
    A = sigmoid(np.dot(w.T,X)+b)
    cost = -(1.0/m) * np.sum(Y*np.log(A)+(1-Y)*np.log(1-A)) # compute cost

    # BACKWARD PROPAGATION (TO FIND GRAD)
    dw = (1.0/m) * np.dot(X,(A-Y).T)
    db = (1.0/m) * np.sum(A-Y)

    assert (dw.shape == w.shape)
    assert (db.dtype == float)
    cost = np.squeeze(cost)
    assert (cost.shape == ())

    grads = {"dw": dw,
             "db": db}

    return grads, cost
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
    """
    整體優化過程

    引數:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps

    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.

    Tips:
    You basically need to write down two steps and iterate through them:
        1) Calculate the cost and the gradient for the current parameters. Use propagate().
        2) Update the parameters using gradient descent rule for w and b.
    """

    costs = []

    for i in range(num_iterations):

        # Cost and gradient calculation 
        grads,cost = propagate(w,b,X,Y)
        costs.append(cost)

        # Retrieve derivatives from grads
        dw = grads["dw"]
        db = grads["db"]

        # update rule (≈ 2 lines of code)
        w = w - learning_rate * dw
        b = b - learning_rate * db
        

        # Record the costs
        if i % 100 == 0:
            costs.append(cost)

        # Print the cost every 100 training examples
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" % (i, cost))

    params = {"w": w,
              "b": b}

    grads = {"dw": dw,
             "db": db}

    return params, grads, costs
def predict(w, b, X):
    '''
    根據訓練權重進行預測

    引數:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)

    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''

    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)

    # Compute vector "A" predicting the probabilities of a cat being present in the picture  
    A= sigmoid(np.dot(w.T,X)+b)

    for i in range(A.shape[1]):
        # Convert probabilities A[0,i] to actual predictions p[0,i]
        if A[0,i] <= 0.5:
            Y_prediction[0,i] = 0
        else:
            Y_prediction[0,i] = 1
        
    assert (Y_prediction.shape == (1, m))
    return Y_prediction

3.4 整體建模

def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
    """
    將整個流程建模
    引數:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations

    Returns:
    d -- dictionary containing information about the model.
    """

    # initialize parameters with zeros
    w, b = initialize_with_zeros(X_train.shape[0])

    # Gradient descent 
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost)

    # Retrieve parameters w and b from dictionary "parameters"
    w = parameters["w"]
    b = parameters["b"]

    # Predict test/train set examples
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
    
    # Print train/test Errors
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))

    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}

    return d

訓練與結果展示:

d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)

 

四、小結

       通過整體推導+實踐可以對邏輯迴歸的正向傳播、梯度下降、反向傳播等問題有一個基本瞭解,這對後續更深層次網路的理解十分有必要。