1. 程式人生 > >重新認識HashMap(jdk1.8新增特性)

重新認識HashMap(jdk1.8新增特性)

1.背景:

HashMap是Java程式設計師使用頻率最高的用於對映(鍵值對)處理的資料型別。隨著JDK(Java Developmet Kit)版本的更新,JDK1.8對HashMap底層的實現進行了優化,例如引入紅黑樹的資料結構和擴容的優化等。

Java為資料結構中的對映定義了一個介面java.util.Map,此介面主要有四個常用的實現類,分別是HashMap、Hashtable、LinkedHashMap和TreeMap,類繼承關係如下圖所示:

(1) HashMap:它根據鍵的hashCode值儲存資料,大多數情況下可以直接定位到它的值,因而具有很快的訪問速度,但遍歷順序卻是不確定的。 HashMap最多隻允許一條記錄的鍵為null,允許多條記錄的值為null。HashMap非執行緒安全,即任一時刻可以有多個執行緒同時寫HashMap,可能會導致資料的不一致。如果需要滿足執行緒安全,可以用 Collections的synchronizedMap方法使HashMap具有執行緒安全的能力,或者使用ConcurrentHashMap。

(2) Hashtable:Hashtable是遺留類,很多對映的常用功能與HashMap類似,不同的是它承自Dictionary類,並且是執行緒安全的,任一時間只有一個執行緒能寫Hashtable,併發性不如ConcurrentHashMap,因為ConcurrentHashMap引入了分段鎖。Hashtable不建議在新程式碼中使用,不需要執行緒安全的場合可以用HashMap替換,需要執行緒安全的場合可以用ConcurrentHashMap替換。

(3) LinkedHashMap:LinkedHashMap是HashMap的一個子類,儲存了記錄的插入順序,在用Iterator遍歷LinkedHashMap時,先得到的記錄肯定是先插入的,也可以在構造時帶引數,按照訪問次序排序。

(4) TreeMap:TreeMap實現SortedMap介面,能夠把它儲存的記錄根據鍵排序,預設是按鍵值的升序排序,也可以指定排序的比較器,當用Iterator遍歷TreeMap時,得到的記錄是排過序的。如果使用排序的對映,建議使用TreeMap。在使用TreeMap時,key必須實現Comparable介面或者在構造TreeMap傳入自定義的Comparator,否則會在執行時丟擲java.lang.ClassCastException型別的異常。

對於上述四種Map型別的類,要求對映中的key是不可變物件。不可變物件是該物件在建立後它的雜湊值不會被改變。如果物件的雜湊值發生變化,Map物件很可能就定位不到對映的位置了。

2.儲存結構:

從結構實現來講,HashMap是陣列+連結串列+紅黑樹(JDK1.8增加了紅黑樹部分)實現的,如下圖所示。

 

HashMap就是使用雜湊表來儲存的。雜湊表為解決衝突,可以採用開放地址法和鏈地址法等來解決問題,Java中HashMap採用了鏈地址法。鏈地址法,簡單來說,就是陣列加連結串列的結合。在每個陣列元素上都一個連結串列結構,當資料被Hash後,得到陣列下標,把資料放在對應下標元素的連結串列上。

3.分析HashMap的put方法

①.判斷鍵值對陣列table[i]是否為空或為null,否則執行resize()進行擴容;

②.根據鍵值key計算hash值得到插入的陣列索引i,如果table[i]==null,直接新建節點新增,轉向⑥,如果table[i]不為空,轉向③;

③.判斷table[i]的首個元素是否和key一樣,如果相同直接覆蓋value,否則轉向④,這裡的相同指的是hashCode以及equals;

④.判斷table[i] 是否為treeNode,即table[i] 是否是紅黑樹,如果是紅黑樹,則直接在樹中插入鍵值對,否則轉向⑤;

⑤.遍歷table[i],判斷連結串列長度是否大於8,大於8的話把連結串列轉換為紅黑樹,在紅黑樹中執行插入操作,否則進行連結串列的插入操作;遍歷過程中若發現key已經存在直接覆蓋value即可;

⑥.插入成功後,判斷實際存在的鍵值對數量size是否超多了最大容量threshold,如果超過,進行擴容。

4.JDK1.8的優化:

經過觀測可以發現,我們使用的是2次冪的擴充套件(指長度擴為原來2倍),所以,元素的位置要麼是在原位置,要麼是在原位置再移動2次冪的位置。看下圖可以明白這句話的意思,n為table的長度,圖(a)表示擴容前的key1和key2兩種key確定索引位置的示例,圖(b)表示擴容後key1和key2兩種key確定索引位置的示例,其中hash1是key1對應的雜湊與高位運算結果。

 

元素在重新計算hash之後,因為n變為2倍,那麼n-1的mask範圍在高位多1bit(紅色),因此新的index就會發生這樣的變化:

 

因此,我們在擴充HashMap的時候,不需要像JDK1.7的實現那樣重新計算hash,只需要看看原來的hash值新增的那個bit是1還是0就好了,是0的話索引沒變,是1的話索引變成“原索引+oldCap”,可以看看下圖為16擴充為32的resize示意圖:

 

 這個設計確實非常的巧妙,既省去了重新計算hash值的時間,而且同時,由於新增的1bit是0還是1可以認為是隨機的,因此resize的過程,均勻的把之前的衝突的節點分散到新的bucket了。這一塊就是JDK1.8新增的優化點。有一點注意區別,JDK1.7中rehash的時候,舊連結串列遷移新連結串列的時候,如果在新表的陣列索引位置相同,則連結串列元素會倒置,但是從上圖可以看出,JDK1.8不會倒置。

3.執行緒安全性:

在多執行緒使用場景中,應該儘量避免使用執行緒不安全的HashMap,而使用執行緒安全的ConcurrentHashMap。

4.JDK1.8與JDK1.8之前的效能對比:

當一個連結串列太長的時候(連結串列長度大於8時),HashMap會動態的將它替換成一個紅黑樹,這話的話會將時間複雜度從O(n)降為O(logn)。

(1) 擴容是一個特別耗效能的操作,所以當程式設計師在使用HashMap的時候,估算map的大小,初始化的時候給一個大致的數值,避免map進行頻繁的擴容。

(2) 負載因子是可以修改的,也可以大於1,但是建議不要輕易修改,除非情況非常特殊。

(3) HashMap是執行緒不安全的,不要在併發的環境中同時操作HashMap,建議使用ConcurrentHashMap。

(4) JDK1.8引入紅黑樹大程度優化了HashMap的效能。