1. 程式人生 > >矩陣中的特徵值和奇異值,物理意義

矩陣中的特徵值和奇異值,物理意義

一、奇異值與特徵值基礎知識:

    特徵值分解和奇異值分解在機器學習領域都是屬於滿地可見的方法。兩者有著很緊密的關係,我在接下來會談到,特徵值分解和奇異值分解的目的都是一樣,就是提取出一個矩陣最重要的特徵。先談談特徵值分解吧:

   1)特徵值:

    如果說一個向量v是方陣A的特徵向量,將一定可以表示成下面的形式:

image

    這時候λ就被稱為特徵向量v對應的特徵值,一個矩陣的一組特徵向量是一組正交向量。特徵值分解是將一個矩陣分解成下面的形式:

image

    其中Q是這個矩陣A的特徵向量組成的矩陣,Σ是一個對角陣,每一個對角線上的元素就是一個特徵值。我這裡引用了一些參考文獻中的內容來說明一下。首先,要明確的是,一個矩陣其實就是一個線性變換,因為一個矩陣乘以一個向量後得到的向量,其實就相當於將這個向量進行了線性變換。比如說下面的一個矩陣:

   image    它其實對應的線性變換是下面的形式:

image    因為這個矩陣M乘以一個向量(x,y)的結果是:

image    上面的矩陣是對稱的,所以這個變換是一個對x,y軸的方向一個拉伸變換(每一個對角線上的元素將會對一個維度進行拉伸變換,當值>1時,是拉長,當值<1時時縮短),當矩陣不是對稱的時候,假如說矩陣是下面的樣子:

 

 

 

 

image

    它所描述的變換是下面的樣子:

image

    這其實是在平面上對一個軸進行的拉伸變換(如藍色的箭頭所示),在圖中,藍色的箭頭是一個最主要的變化方向(變化方向可能有不止一個),如果我們想要描述好一個變換,那我們就描述好這個變換主要的變化方向就好了。反過頭來看看之前特徵值分解的式子,分解得到的Σ矩陣是一個對角陣,裡面的特徵值是由大到小排列的,這些特徵值所對應的特徵向量就是描述這個矩陣變化方向(從主要的變化到次要的變化排列)

    當矩陣是高維的情況下,那麼這個矩陣就是高維空間下的一個線性變換,這個線性變化可能沒法通過圖片來表示,但是可以想象,這個變換也同樣有很多的變換方向,我們通過特徵值分解得到的前N個特徵向量,那麼就對應了這個矩陣最主要的N個變化方向。我們利用這前N個變化方向,就可以近似這個矩陣(變換)。也就是之前說的:提取這個矩陣最重要的特徵。

總結一下,特徵值分解可以得到特徵值與特徵向量,特徵值表示的是這個特徵到底有多重要,而特徵向量表示這個特徵是什麼,可以將每一個特徵向量理解為一個線性的子空間,我們可以利用這些線性的子空間幹很多的事情。不過,特徵值分解也有很多的侷限,比如說變換的矩陣必須是方陣。

   (說了這麼多特徵值變換,不知道有沒有說清楚,請各位多提提意見。)

 

   2)奇異值:

    下面談談奇異值分解。特徵值分解是一個提取矩陣特徵很不錯的方法,但是它只是對方陣而言的,在現實的世界中,我們看到的大部分矩陣都不是方陣,比如說有N個學生,每個學生有M科成績,這樣形成的一個N * M的矩陣就不可能是方陣,我們怎樣才能描述這樣普通的矩陣呢的重要特徵呢?奇異值分解可以用來幹這個事情,奇異值分解是一個能適用於任意的矩陣的一種分解的方法

image    假設A是一個N * M的矩陣,那麼得到的U是一個N * N的方陣(裡面的向量是正交的,U裡面的向量稱為左奇異向量),Σ是一個N * M的矩陣(除了對角線的元素都是0,對角線上的元素稱為奇異值),V’(V的轉置)是一個N * N的矩陣,裡面的向量也是正交的,V裡面的向量稱為右奇異向量),從圖片來反映幾個相乘的矩陣的大小可得下面的圖片

image

    那麼奇異值和特徵值是怎麼對應起來的呢?首先,我們將一個矩陣A的轉置 * A,將會得到一個方陣,我們用這個方陣求特徵值可以得到:image    這裡得到的v,就是我們上面的右奇異向量。此外我們還可以得到:

image    這裡的σ就是上面說的奇異值,u就是上面說的左奇異向量。奇異值σ跟特徵值類似,在矩陣Σ中也是從大到小排列,而且σ的減少特別的快,在很多情況下,前10%甚至1%的奇異值的和就佔了全部的奇異值之和的99%以上了。也就是說,我們也可以用前r大的奇異值來近似描述矩陣,這裡定義一下部分奇異值分解

image

    r是一個遠小於m、n的數,這樣矩陣的乘法看起來像是下面的樣子:

 

 

 

 

image

    右邊的三個矩陣相乘的結果將會是一個接近於A的矩陣,在這兒,r越接近於n,則相乘的結果越接近於A。而這三個矩陣的面積之和(在儲存觀點來說,矩陣面積越小,儲存量就越小)要遠遠小於原始的矩陣A,我們如果想要壓縮空間來表示原矩陣A,我們存下這裡的三個矩陣:U、Σ、V就好了。

 

只複製了一部分,原文在下面的連結裡

https://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html