1. 程式人生 > >Coursera 吳恩達 Deep Learning 第2課 Improving Deep Neural Networks 第一週 程式設計作業程式碼 Regularization

Coursera 吳恩達 Deep Learning 第2課 Improving Deep Neural Networks 第一週 程式設計作業程式碼 Regularization

2 - L2 Regularization

# GRADED FUNCTION: compute_cost_with_regularization def compute_cost_with_regularization(A3, Y, parameters, lambd):     """     Implement the cost function with L2 regularization. See formula (2) above.     Arguments:     A3 -- post-activation, output of forward propagation, of shape (output size, number of examples)
    Y -- "true" labels vector, of shape (output size, number of examples)     parameters -- python dictionary containing parameters of the model     Returns:     cost - value of the regularized loss function (formula (2))     """     m = Y.shape[1]     W1 = parameters["W1"]     W2 = parameters["W2"]
    W3 = parameters["W3"]     cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost     ### START CODE HERE ### (approx. 1 line)     L2_regularization_cost = np.sum(np.sum(np.square(Wl)) for Wl in [W1, W2, W3]) * lambd / (2 * m)     ### END CODER HERE ###     cost = cross_entropy_cost + L2_regularization_cost
    return cost # GRADED FUNCTION: backward_propagation_with_regularization def backward_propagation_with_regularization(X, Y, cache, lambd):     """     Implements the backward propagation of our baseline model to which we added an L2 regularization.     Arguments:     X -- input dataset, of shape (input size, number of examples)     Y -- "true" labels vector, of shape (output size, number of examples)     cache -- cache output from forward_propagation()     lambd -- regularization hyperparameter, scalar     Returns:     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables     """     m = X.shape[1]     (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache     dZ3 = A3 - Y     ### START CODE HERE ### (approx. 1 line)     dW3 = 1./m * np.dot(dZ3, A2.T) + W3 * lambd / m     ### END CODE HERE ###     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)     dA2 = np.dot(W3.T, dZ3)     dZ2 = np.multiply(dA2, np.int64(A2 > 0))     ### START CODE HERE ### (approx. 1 line)     dW2 = 1./m * np.dot(dZ2, A1.T) + W2 * lambd / m     ### END CODE HERE ###     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)     dA1 = np.dot(W2.T, dZ2)     dZ1 = np.multiply(dA1, np.int64(A1 > 0))     ### START CODE HERE ### (approx. 1 line)     dW1 = 1./m * np.dot(dZ1, X.T) + W1 * lambd / m     ### END CODE HERE ###     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,                  "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,                  "dZ1": dZ1, "dW1": dW1, "db1": db1}     return gradients

3.1 - Forward propagation with dropout

# GRADED FUNCTION: forward_propagation_with_dropout def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):     """     Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.     Arguments:     X -- input dataset, of shape (2, number of examples)     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":                     W1 -- weight matrix of shape (20, 2)                     b1 -- bias vector of shape (20, 1)                     W2 -- weight matrix of shape (3, 20)                     b2 -- bias vector of shape (3, 1)                     W3 -- weight matrix of shape (1, 3)                     b3 -- bias vector of shape (1, 1)     keep_prob - probability of keeping a neuron active during drop-out, scalar     Returns:     A3 -- last activation value, output of the forward propagation, of shape (1,1)     cache -- tuple, information stored for computing the backward propagation     """     np.random.seed(1)     # retrieve parameters     W1 = parameters["W1"]     b1 = parameters["b1"]     W2 = parameters["W2"]     b2 = parameters["b2"]     W3 = parameters["W3"]     b3 = parameters["b3"]     # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID     Z1 = np.dot(W1, X) + b1     A1 = relu(Z1)     ### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above.     D1 = np.random.rand(np.shape(A1)[0],np.shape(A1)[1])                                        # Step 1: initialize matrix D1 = np.random.rand(..., ...)     D1 = (D1 < keep_prob)                                         # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)     A1 = A1 * D1                                         # Step 3: shut down some neurons of A1     A1 = A1 / keep_prob                                        # Step 4: scale the value of neurons that haven't been shut down     ### END CODE HERE ###     Z2 = np.dot(W2, A1) + b2     A2 = relu(Z2)     ### START CODE HERE ### (approx. 4 lines)     D2 = np.random.rand(np.shape(A2)[0],np.shape(A2)[1])             # Step 1: initialize matrix D2 = np.random.rand(..., ...)     D2 = (D2 < keep_prob)                                      # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)     A2 = A2 * D2                                      # Step 3: shut down some neurons of A2     A2 = A2 / keep_prob                                        # Step 4: scale the value of neurons that haven't been shut down     ### END CODE HERE ###     Z3 = np.dot(W3, A2) + b3     A3 = sigmoid(Z3)     cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)     return A3, cache

3.2 - Backward propagation with dropout

# GRADED FUNCTION: backward_propagation_with_dropout def backward_propagation_with_dropout(X, Y, cache, keep_prob):     """     Implements the backward propagation of our baseline model to which we added dropout.     Arguments:     X -- input dataset, of shape (2, number of examples)     Y -- "true" labels vector, of shape (output size, number of examples)     cache -- cache output from forward_propagation_with_dropout()     keep_prob - probability of keeping a neuron active during drop-out, scalar     Returns:     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables     """     m = X.shape[1]     (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache     dZ3 = A3 - Y     dW3 = 1./m * np.dot(dZ3, A2.T)     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)     dA2 = np.dot(W3.T, dZ3)     ### START CODE HERE ### (≈ 2 lines of code)     dA2 = dA2 * D2             # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation     dA2 = dA2 / keep_prob             # Step 2: Scale the value of neurons that haven't been shut down     ### END CODE HERE ###     dZ2 = np.multiply(dA2, np.int64(A2 > 0))     dW2 = 1./m * np.dot(dZ2, A1.T)     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)     dA1 = np.dot(W2.T, dZ2)     ### START CODE HERE ### (≈ 2 lines of code)     dA1 = dA1 * D1              # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation     dA1 = dA1 / keep_prob              # Step 2: Scale the value of neurons that haven't been shut down     ### END CODE HERE ###     dZ1 = np.multiply(dA1, np.int64(A1 > 0))     dW1 = 1./m * np.dot(dZ1, X.T)     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,                  "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,                  "dZ1": dZ1, "dW1": dW1, "db1": db1}     return gradients