1. 程式人生 > >EM演算法之高斯混合模型(二)

EM演算法之高斯混合模型(二)

EM引數求解

我們將GMM帶入 θ(g+1)

θ(g+1)=argmaxθzln{P(X,z|θ)P(z|X,θ(g))}dz(6.1)
其中
P(Z|X,θ(g))=i=1NP(zi|xi,θ(g))=P(xi|zi)P(zi)
ki
P(xi|zi)P(zi)
=N(xi|μzi,Σzi)πziklN(xi|μl,Σl)πl(6.2)

P(X,z|θ)=
i=1N
P(xi,zi|θ)=i=1NP(xi|zi,θ)P(zi|θ)=
i=1NπiN(μzi,Σzi)(6.3)

將6.2和6.3帶入6.1
E-step
確定Q函式,求函式的期望
z1=1kz2=1
k
...zN=1k(i=1)N[lnπzi+ln(N(xi|μzi,Σzi))]i=1NP(zi|xi,θ(g))
(6.4)


fi(zi)=lnπzi+ln(N(xi|μzi,Σzi)(6.5)
P(Z)=iNP(zi|xi,θ(g))(6.6)
那麼式子6.4可以化解為:
z1=1kz2=1k...zN=1k(f1(z1)+f2(z2)+...+fN(zN))P(z1,z2,...zN)=

相關推薦

EM演算法混合模型()

EM引數求解 我們將GMM帶入 θ(g+1) \theta^{(g+1)}中 θ(g+1)=argmaxθ∫zln{P(X,z|θ)P(z|X,θ(g))}dz(6.1) \theta^{(g+1)} = {argm

EM演算法混合模型(一)

單個高斯模型 如果我們有一堆資料,其分佈屬於一個高斯模型,那麼有 p(X)=N(x|μ,Σ)=1(2π)m|Σ|‾‾‾‾‾‾‾‾√exp[−12(x−μ)TΣ−1(x−μ)](1.1) p(X) = N(x|\mu,\Sigma) = \

【機器學習】EM演算法混合模型學習中的應用

前言 EM演算法,此部落格介紹了EMEM演算法相關理論知識,看本篇部落格前先熟悉EMEM演算法。 本篇部落格打算先從單個高斯分佈說起,然後推廣到多個高斯混合起來,最後給出高斯混合模型引數求解過程。 單個高斯分佈 假如我們有一些資料,這些資料來自同一個

EM演算法混合模型

      由k個高斯模型加權組成,α是各高斯分佈的權重,Θ是引數。對GMM模型的引數估計,就要用EM演算法。更一般的講,EM演算法適用於帶有隱變數的概率模型的估計,即不同的高斯分佈所對應的類別變數。   為何不能使用極大似然估計,如果直接使用極大似然估計

EM演算法混合模型中的應用(詳細解釋與求解)

1、高斯混合模型GMM 是指具有以下概率分佈的模型: P ( y

R語言:EM演算法混合模型的R語言實現

本文我們討論期望最大化理論,應用和評估基於期望最大化的聚類。軟體包install.packages("mclust");require(mclust)## Loading required package: mclust## Package 'mclust' version

斯坦福大學機器學習——EM演算法求解混合模型

EM演算法(Expection-Maximizationalgorithm,EM)是一種迭代演算法,通過E步和M步兩大迭代步驟,每次迭代都使極大似然函式增加。但是,由於初始值的不同,可能會使似然函式陷入區域性最優。辜麗川老師和其夫人發表的論文:基於分裂EM演算法的GMM引數

EM演算法混合模型GMM介紹

EM演算法 EM演算法主要用於求概率密度函式引數的最大似然估計,將問題$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$轉換為更加易於計算的$\sum_{i=1}^{n} \ln p\left(x_{i}

EM(期望最大演算法)在混合模型中的python實現

以下程式碼僅實現了兩個高斯混合模型在均勻分佈條件下的引數估計,想要實現完全隨機的非均勻分佈的多高斯混合模型,可在上面加以修改。具體參考書中的9.3.2節 ##python實現## import math #import copy import numpy

【機器學習】機器學習(十、十三):K-means演算法混合模型

簡介:         本節介紹STANFORD機器學習公開課中的第12、13集視訊中的演算法:K-means演算法、高斯混合模型(GMM)。(9、10、11集不進行介紹,略過了哈) 一、K-means演算法         屬於無監督學習的聚類演算法,給定一組未標定的資料

聚類混合模型(Gaussian Mixture Model)

k-means應該是原來級別的聚類方法了,這整理下一個使用後驗概率準確評測其精度的方法—高斯混合模型。 我們談到了用 k-means 進行聚類的方法,這次我們來說一下另一個很流行的演算法:Gaussian Mixture Model (GMM)。事實上,GMM

聚類混合模型(Gaussian Mixture Model)【轉】

k-means應該是原來級別的聚類方法了,這整理下一個使用後驗概率準確評測其精度的方法—高斯混合模型。 我們談到了用 k-means 進行聚類的方法,這次我們來說一下另一個很流行的演算法:Gaussian Mixture Model (GMM)。事實上,GMM 和 k-means 很像,不過 GMM 是學習

背景建模混合模型

在運動目標檢測提取中,背景目標對於目標的識別和跟蹤至關重要。而建模正是背景目標提取的一個重要環節。 前景是指在假設背景為靜止的情況下,任何有意義的運動物體即為前景。 運動物體檢測的問題主要分為兩類,攝像機固定和攝像機運動。對於攝像機運動的運動物體檢測問題,比較著名的解決方

混合模型視訊背景建模的EM演算法與Matlab 實現

1.問題描述 影像的背景前景分離. 輸⼊為影像監控的1000 幀 (如下⽅圖中左邊所⽰), 要求輸出是背景和前景 (如下⽅圖中右邊所⽰). 2.背景知識 觀察待處理的監控影像,可以發現,前景主要是來來往往的行人,背景始終是攝像頭對準的固定區域,

05 EM演算法 - 混合模型 - GMM

04 EM演算法 - EM演算法收斂證明 __GMM__(Gaussian Mixture Model, 高斯混合模型)是指該演算法由多個高斯模型線性疊加混合而成。每個高斯模型稱之為component。 __GMM演算法__描述的是資料的本身存在的一種分佈,即樣本特徵屬性的分佈,和預測值Y無關。顯然G

混合模型(GMM)及其EM演算法的理解

一個例子 高斯混合模型(Gaussian Mixed Model)指的是多個高斯分佈函式的線性組合,理論上GMM可以擬合出任意型別的分佈,通常用於解決同一集合下的資料包含多個不同的分佈的情況(或者是同一類分佈但引數不一樣,或者是不同型別的分佈,比如正態分佈和伯

混合模型(GMM)及其求解(期望最大化(EM演算法

1、高斯混合模型的公式表達 高斯混合模型是指隨機變數x具有如下形式的分佈(概率密度函式): (公式1) 其中,引數θθ代表所有混合成分的引數(均值向量μ與協方差矩陣Σ)的集合: (公式2) 每個混合成分的概率密度函式為:

[R][原始碼]EM演算法實現基於混合模型(GMM)的聚類

要求:用EM演算法實現基於GMM的聚類演算法。一、實驗資料參考[1] 3.3.2章節。由兩個二維高斯分佈混合生成1000個數據,混合係數分別是0.4、0.6,均值和方差如下:mu1=[-2,-2]sigma1=[1.2, 0.5, 0.5, 1]mean2=[2,2]sigm

EM演算法原理詳解與混合模型

藉助於machine learning cs229和文章【1】中的內容把EM演算法的過程順一遍,加深一下印象。 關於EM公式的推導,一般會有兩個證明,一個是利用Jesen不等式,另一個是將其分解成KL距離和L函式,本質是類似的。 下面介紹Jensen EM的

混合模型引數估計的EM演算法

一、高斯模型簡介       首先介紹一下單高斯模型(GSM)和高斯混合模型(GMM)的大概思想。 1.單高斯模型       如題,就是單個高斯分佈模型or正態分佈模型。想必大家都知道正態分佈,這一分佈反映了自然界普遍存在的有關變數的一種統計規律,例如身高,考試成績等;而且有很好的數學性質,具有各階導數