1. 程式人生 > >十分鐘掌握pandas(pandas官方文件翻譯)

十分鐘掌握pandas(pandas官方文件翻譯)

十分鐘掌握pandas

文件版本:0.20.3

這是一個對pandas簡短的介紹,適合新使用者。你可以在Cookbook中檢視更詳細的內容。 
通常,我們要像下面一樣匯入一些包。

In [1]: import pandas as pd

In [2]: import numpy as np

In [3]: import matplotlib.pyplot as plt

建立物件

用一個包含值的序列建立一個Series,pandas會建立一個預設的整數索引

In [4]: s = pd.Series([1,3,5,np.nan,6,8])
In [5]: s
Out[5]: 
0    1.0
1    3.0
2    5.0
3    NaN
4    6.0
5    8.0
dtype: float64

用numpy數值建立一個帶有datetime索引和列標籤的資料框

In [6]: dates = pd.date_range('20130101', periods=6)

In [7]: dates
Out[7]: 
DatetimeIndex(['2013-01-01', '2013-01-02',
               '2013-01-03', '2013-01-04',
               '2013-01-05','2013-01-06'],
                dtype='datetime64[ns]', freq='D')

In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

In [9]: df
Out[9]: 
                 A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

用包含物件的字典建立一個數據框,該方法與建立Series的方法相似。

In [10]: df2 = pd.DataFrame({ 'A' : 1.,
    ....:                      'B' : pd.Timestamp('20130102'),
    ....:                      'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
    ....:                      'D' : np.array([3] * 4,dtype='int32'),
    ....:                      'E' : pd.Categorical(["test","train","test","train"]),
    ....:                      'F' : 'foo' })
    ....: 

In [11]: df2
Out[11]: 
        A          B    C  D      E    F
    0  1.0 2013-01-02  1.0  3   test  foo
    1  1.0 2013-01-02  1.0  3  train  foo
    2  1.0 2013-01-02  1.0  3   test  foo
    3  1.0 2013-01-02  1.0  3  train  foo

該資料框有特殊的dtypes

In [12]: df2.dtypes
Out[12]: 
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

如果你是使用IPython,tab鍵可以自動啟用可選列名(包括其它的屬性)。下邊就有一個可以被實現的屬性的集合。

In [13]: df2.<TAB>
df2.A                  df2.bool
df2.abs                df2.boxplot
df2.add                df2.C
df2.add_prefix         df2.clip
df2.add_suffix         df2.clip_lower
df2.align              df2.clip_upper
df2.all                df2.columns
df2.any                df2.combine
df2.append             df2.combine_first
df2.apply              df2.compound
df2.applymap           df2.consolidate
df2.as_blocks          df2.convert_objects
df2.asfreq             df2.copy
df2.as_matrix          df2.corr
df2.astype             df2.corrwith
df2.at                 df2.count
df2.at_time            df2.cov
df2.axes               df2.cummax
df2.B                  df2.cummin
df2.between_time       df2.cumprod
df2.bfill              df2.cumsum
df2.blocks             df2.D

就像你所見到的列A,B,C和D的自動彈出都可以由tab完成。列E也是一樣的;剩下的屬性為了簡短起見都省略了。

檢視資料

檢視整個資料的頭部或尾部

In [14]: df.head()
Out[14]: 
                 A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

In [15]: df.tail(3)
Out[15]: 
               A         B         C         D
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-05 -0.424972  0.567020  0.276232 -1.087401
2013-01-06 -0.673690  0.113648 -1.478427  0.524988

顯示資料框的索引,列名和值。

In [16]: df.index
Out[16]: 
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
            '2013-01-05', '2013-01-06'],
            dtype='datetime64[ns]', freq='D')

In [17]: df.columns
Out[17]: Index(['A', 'B', 'C', 'D'], dtype='object')

In [18]: df.values
Out[18]: 
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
   [ 1.2121, -0.1732,  0.1192, -1.0442],
   [-0.8618, -2.1046, -0.4949,  1.0718],
   [ 0.7216, -0.7068, -1.0396,  0.2719],
   [-0.425 ,  0.567 ,  0.2762, -1.0874],
   [-0.6737,  0.1136, -1.4784,  0.525 ]])

描述性顯示關於資料的簡短統計摘要

In [19]: df.describe()
Out[19]: 
            A         B         C         D
count  6.000000  6.000000  6.000000  6.000000
mean   0.073711 -0.431125 -0.687758 -0.233103
std    0.843157  0.922818  0.779887  0.973118
min   -0.861849 -2.104569 -1.509059 -1.135632
25%   -0.611510 -0.600794 -1.368714 -1.076610
50%    0.022070 -0.228039 -0.767252 -0.386188
75%    0.658444  0.041933 -0.034326  0.461706
max    1.212112  0.567020  0.276232  1.071804

轉置資料

In [20]: df.T
Out[20]: 
        2013-01-01  2013-01-02  2013-01-03  2013-01-04  2013-01-05  2013-01-06
    A    0.469112    1.212112   -0.861849    0.721555   -0.424972   -0.673690
    B   -0.282863   -0.173215   -2.104569   -0.706771    0.567020    0.113648
    C   -1.509059    0.119209   -0.494929   -1.039575    0.276232   -1.478427
    D   -1.135632   -1.044236    1.071804    0.271860   -1.087401    0.524988

通過軸來分類你的資料(相當於排序,axis=1可以理解為分類列名,=0則為索引名)

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]: 
                 D         C         B         A
2013-01-01 -1.135632 -1.509059 -0.282863  0.469112
2013-01-02 -1.044236  0.119209 -0.173215  1.212112
2013-01-03  1.071804 -0.494929 -2.104569 -0.861849
2013-01-04  0.271860 -1.039575 -0.706771  0.721555
2013-01-05 -1.087401  0.276232  0.567020 -0.424972
2013-01-06  0.524988 -1.478427  0.113648 -0.673690

通過值來分類

In [22]: df.sort_values(by='B')
Out[22]: 
                 A         B         C         D
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-06 -0.673690  0.113648 -1.478427  0.524988
2013-01-05 -0.424972  0.567020  0.276232 -1.087401

選擇資料

小記:對於選擇資料和設定資料來說,標準的python和numpy表示式非常直觀而且對於互動式 
工作來說很難進行的,對於應用性程式碼來說,我們比較推薦最優化的pandas資料獲取方法, 
例如.at, .iat, .loc, .iloc and .ix。

獲取

在方括號中輸入這個單一的列名,來獲得一個Series,該操作相當於df.A

In [23]: df['A']
Out[23]: 
2013-01-01    0.469112
2013-01-02    1.212112
2013-01-03   -0.861849
2013-01-04    0.721555
2013-01-05   -0.424972
2013-01-06   -0.673690
Freq: D, Name: A, dtype: float64

通過對行切片來獲取資料

In [24]: df[0:3]
Out[24]: 
               A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

In [25]: df['20130102':'20130104']
Out[25]: 
               A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

由標籤獲取資料

用標籤來擷取一行資料

In [26]: df.loc[dates[0]]
Out[26]: 
A    0.469112
B   -0.282863
C   -1.509059
D   -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

在多個軸上通過標籤來選取資料

In [27]: df.loc[:,['A','B']]
Out[27]: 
               A         B
2013-01-01  0.469112 -0.282863
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020
2013-01-06 -0.673690  0.113648

同時用標籤切片和標籤名索引來獲取資料

In [28]: df.loc['20130102':'20130104',['A','B']]
Out[28]: 
               A         B
2013-01-02  1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04  0.721555 -0.706771

對返回的物件的維度進行減少維度

In [29]: df.loc['20130102',['A','B']]
Out[29]: 
A    1.212112
B   -0.173215
Name: 2013-01-02 00:00:00, dtype: float64

僅僅獲取標量值的方法

In [30]: df.loc[dates[0],'A']
Out[30]: 0.46911229990718628

更快地獲取標量值(效果相當於前一個方法)

In [31]: df.at[dates[0],'A']
Out[31]: 0.46911229990718628

通過位置進行索引

通過適合的整數來代表位置進行索引

In [32]: df.iloc[3]
Out[32]: 
A    0.721555
B   -0.706771
C   -1.039575
D    0.271860
Name: 2013-01-04 00:00:00, dtype: float64

與numpy/python相似的操作,整數切片來獲取資料

In [33]: df.iloc[3:5,0:2]
Out[33]: 
               A         B
2013-01-04  0.721555 -0.706771
2013-01-05 -0.424972  0.567020

通過含有代表位置的整數列表來獲取資料,與numpy/python的風格相似

In [34]: df.iloc[[1,2,4],[0,2]]
Out[34]: 
               A         C
2013-01-02  1.212112  0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972  0.276232

顯式切片索引行

In [35]: df.iloc[1:3,:]
Out[35]: 
               A         B         C         D
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804

顯式切片索引列

In [36]: df.iloc[:,1:3]
Out[36]: 
               B         C
2013-01-01 -0.282863 -1.509059
2013-01-02 -0.173215  0.119209
2013-01-03 -2.104569 -0.494929
2013-01-04 -0.706771 -1.039575
2013-01-05  0.567020  0.276232
2013-01-06  0.113648 -1.478427

顯式索引資料值

In [37]: df.iloc[1,1]
Out[37]: -0.17321464905330858

使系統快速地獲取標量值(結果與前一個方法相等)

In [38]: df.iat[1,1]
Out[38]: -0.17321464905330858

布林值索引

使用單一的列的值來選取資料

In [39]: df[df.A > 0]
Out[39]: 
               A         B         C         D
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632
2013-01-02  1.212112 -0.173215  0.119209 -1.044236
2013-01-04  0.721555 -0.706771 -1.039575  0.271860

從給出布林條件的資料框來獲取資料

In [40]: df[df > 0]
Out[40]: 
               A         B         C         D
2013-01-01  0.469112       NaN       NaN       NaN
2013-01-02  1.212112       NaN  0.119209       NaN
2013-01-03       NaN       NaN       NaN  1.071804
2013-01-04  0.721555       NaN       NaN  0.271860
2013-01-05       NaN  0.567020  0.276232       NaN
2013-01-06       NaN  0.113648       NaN  0.524988

使用isin()方法來過濾資料

In [41]: df2 = df.copy()

In [42]: df2['E'] = ['one', 'one','two','three','four','three']

In [43]: df2
Out[43]: 
               A         B         C         D      E
2013-01-01  0.469112 -0.282863 -1.509059 -1.135632    one
2013-01-02  1.212112 -0.173215  0.119209 -1.044236    one
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804    two
2013-01-04  0.721555 -0.706771 -1.039575  0.271860  three
2013-01-05 -0.424972  0.567020  0.276232 -1.087401   four
2013-01-06 -0.673690  0.113648 -1.478427  0.524988  three

In [44]: df2[df2['E'].isin(['two','four'])]
Out[44]: 
               A         B         C         D     E
2013-01-03 -0.861849 -2.104569 -0.494929  1.071804   two
2013-01-05 -0.424972  0.567020  0.276232 -1.087401  four

安插

在安插新的列時通過索引值自動排列

In [45]: s1 = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]: 
2013-01-02    1
2013-01-03    2
2013-01-04    3
2013-01-05    4
2013-01-06    5
2013-01-07    6
Freq: D, dtype: int64

In [47]: df['F'] = s1

通過標籤安插值

In [48]: df.at[dates[0],'A'] = 0

通過位置安插值

In [49]: df.iat[0,1] = 0

通過分配numpy陣列來安插新的列

In [50]: df.loc[:,'D'] = np.array([5] * len(df))

前面安插值的操作的結果

In [51]: df
Out[51]: 
               A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059  5  NaN
2013-01-02  1.212112 -0.173215  0.119209  5  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0
2013-01-05 -0.424972  0.567020  0.276232  5  4.0
2013-01-06 -0.673690  0.113648 -1.478427  5  5.0

用一個where操作來安插資料

In [52]: df2 = df.copy()

In [53]: df2[df2 > 0] = -df2

In [54]: df2
Out[54]: 
               A         B         C  D    F
2013-01-01  0.000000  0.000000 -1.509059 -5  NaN
2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0

缺失值

早先的pandas使用 np.nan的值來代表缺失值。缺失值預設不會進行計算。

重新排列索引操作允許你在指定的軸上改變/增加/刪除索引。下面返回一個前面資料的複製結果

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1],'E'] = 1

In [57]: df1
Out[57]: 
               A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  NaN  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  NaN
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  NaN

刪除所有含有缺失值的行

In [58]: df1.dropna(how='any')
Out[58]: 
               A         B         C  D    F    E
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0

替換缺失值

In [59]: df1.fillna(value=5)
Out[59]: 
               A         B         C  D    F    E
2013-01-01  0.000000  0.000000 -1.509059  5  5.0  1.0
2013-01-02  1.212112 -0.173215  0.119209  5  1.0  1.0
2013-01-03 -0.861849 -2.104569 -0.494929  5  2.0  5.0
2013-01-04  0.721555 -0.706771 -1.039575  5  3.0  5.0

通過判斷缺失值來獲取布林值

In [60]: pd.isnull(df1)
Out[60]: 
            A      B      C      D      F      E
2013-01-01  False  False  False  False   True  False
2013-01-02  False  False  False  False  False  False
2013-01-03  False  False  False  False  False   True
2013-01-04  False  False  False  False  False   True

運算

統計表

該操作一般不包含缺失值 
呈現一個描述性的統計表

In [61]: df.mean()
Out[61]: 
A   -0.004474
B   -0.383981
C   -0.687758
D    5.000000
F    3.000000
dtype: float64

在其他軸上進行相同的操作

In [62]: df.mean(1)
Out[62]: 
2013-01-01    0.872735
2013-01-02    1.431621
2013-01-03    0.707731
2013-01-04    1.395042
2013-01-05    1.883656
2013-01-06    1.592306
Freq: D, dtype: float64

對有不同的維度和需要排列的物件進行運算。另外,pandas自動沿著指定的維度進行運算。

應用

對資料進行函式的應用

In [66]: df.apply(np.cumsum)
Out[66]: 
               A         B         C   D     F
2013-01-01  0.000000  0.000000 -1.509059   5   NaN
2013-01-02  1.212112 -0.173215 -1.389850  10   1.0
2013-01-03  0.350263 -2.277784 -1.884779  15   3.0
2013-01-04  1.071818 -2.984555 -2.924354  20   6.0
2013-01-05  0.646846 -2.417535 -2.648122  25  10.0
2013-01-06 -0.026844 -2.303886 -4.126549  30  15.0

In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]: 
A    2.073961
B    2.671590
C    1.785291
D    0.000000
F    4.000000
dtype: float64

統計值的頻數

In [68]: s = pd.Series(np.random.randint(0, 7, size=10))

In [69]: s
Out[69]: 
0    4
1    2
2    1
3    2
4    6
5    4
6    4
7    6
8    4
9    4
dtype: int64

In [70]: s.value_counts()
Out[70]: 
4    5
6    2
2    2
1    1
dtype: int64

字串操作

Series擁有像對字串集合處理方法的能力,在str屬性中可以對陣列的每一個元素進行便捷的操作,就像下面的一小片欄位中顯示的那樣。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]: 
0       a
1       b
2       c
3    aaba
4    baca
5     NaN
6    caba
7     dog
8     cat
dtype: object

聚合

組合

pandas提供了不同的工具為了簡便地用不同的方式來對索引設定邏輯和相關的代數功能結合Series,DataFrame和Panel物件,例如join/merge-type操作

用concat()函式來連線pandas物件

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]: 
      0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

# break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]]

In [76]: pd.concat(pieces)
Out[76]: 
      0         1         2         3
0 -0.548702  1.467327 -1.015962 -0.483075
1  1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952  0.991460 -0.919069  0.266046
3 -0.709661  1.669052  1.037882 -1.705775
4 -0.919854 -0.042379  1.247642 -0.009920
5  0.290213  0.495767  0.362949  1.548106
6 -1.131345 -0.089329  0.337863 -0.945867
7 -0.932132  1.956030  0.017587 -0.016692
8 -0.575247  0.254161 -1.143704  0.215897
9  1.193555 -0.077118 -0.408530 -0.862495

Join

SQL風格的聚合方式

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]: 
    key  lval
0  foo     1
1  foo     2

In [80]: right
Out[80]: 
    key  rval
0  foo     4
1  foo     5

In [81]: pd.merge(left, right, on='key')
Out[81]: 
    key  lval  rval
0  foo     1     4
1  foo     1     5
2  foo     2     4
3  foo     2     5

該方法的另一個例子

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]: 
    key  lval
0  foo     1
1  bar     2

In [85]: right
Out[85]: 
    key  rval
0  foo     4
1  bar     5

In [86]: pd.merge(left, right, on='key')
Out[86]: 
     key  lval  rval
0  foo     1     4
1  bar     2     5

附加

對資料框附加行

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])

In [88]: df
Out[88]: 
      A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758

In [89]: s = df.iloc[3]

In [90]: df.append(s, ignore_index=True)
Out[90]: 
      A         B         C         D
0  1.346061  1.511763  1.627081 -0.990582
1 -0.441652  1.211526  0.268520  0.024580
2 -1.577585  0.396823 -0.105381 -0.532532
3  1.453749  1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346  0.339969 -0.693205
5 -0.339355  0.593616  0.884345  1.591431
6  0.141809  0.220390  0.435589  0.192451
7 -0.096701  0.803351  1.715071 -0.708758
8  1.453749  1.208843 -0.080952 -0.264610

分組運算

在”group by”中我們提及一個操作過程,該過程涉及到一個或多個下列步驟

  • 基於一個標準分割資料到各個組中
  • 在每個組中獨立地應用函式
  • 結合結果到資料結構中

    In [91]: df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar','foo', 'bar', 'foo', 'foo'],
                            'B' : ['one', 'one', 'two', 'three','two', 'two', 'one', 'three'],
                            'C' : np.random.randn(8),
                            'D' : np.random.randn(8)})
    
    
    In [92]: df
    Out[92]: 
        A      B         C         D
    0  foo    one -1.202872 -0.055224
    1  bar    one -1.814470  2.395985
    2  foo    two  1.018601  1.552825
    3  bar  three -0.595447  0.166599
    4  foo    two  1.395433  0.047609
    5  bar    two -0.392670 -0.136473
    6  foo    one  0.007207 -0.561757
    7  foo  three  1.928123 -1.623033

分組然後應用sum函式到分組的結果中

In [93]: df.groupby('A').sum()
Out[93]: 
         C        D
A                     
bar -2.802588  2.42611
foo  3.146492 -0.63958

通過多列形式分組獲得多重索引進行應用函式

In [94]: df.groupby(['A','B']).sum()
Out[94]: 
              C         D
A   B                        
bar one   -1.814470  2.395985
three -0.595447  0.166599
two   -0.392670 -0.136473
foo one   -1.195665 -0.616981
three  1.928123 -1.623033
two    2.414034  1.600434

重塑

有堆疊

In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
....:                      'foo', 'foo', 'qux',     'qux'],
....:                     ['one', 'two', 'one',     'two',
....:                      'one', 'two', 'one', 'two']]))
....: 

In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])

In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])

In [98]: df2 = df[:4]

In [99]: df2
Out[99]: 
                 A         B
first second                    
bar   one     0.029399 -0.542108
  two     0.282696 -0.087302
baz   one    -1.575170  1.771208
  two     0.816482  1.100230

stack()方法”壓縮”DataFrame的列

In [100]: stacked = df2.stack()

In [101]: stacked
Out[101]: 
first  second   
bar    one     A    0.029399
               B   -0.542108
       two     A    0.282696
               B   -0.087302
baz    one     A   -1.575170
               B    1.771208
       two     A    0.816482
               B    1.100230
dtype: float64

對於堆疊的資料庫,相反的stack()操作是unstack(),unstack()預設解除最後一個索引的堆疊狀態。

In [102]: stacked.unstack()
Out[102]: 
                 A         B
first second                    
bar   one     0.029399 -0.542108
      two     0.282696 -0.087302
baz   one    -1.575170  1.771208
      two     0.816482  1.100230

In [103]: stacked.unstack(1)
Out[103]: 
second        one       two
first                      
bar   A  0.029399  0.282696
      B -0.542108 -0.087302
baz   A -1.575170  0.816482
      B  1.771208  1.100230

In [104]: stacked.unstack(0)
Out[104]: 
first          bar       baz
second                      
one    A  0.029399 -1.575170
       B -0.542108  1.771208
two    A  0.282696  0.816482
       B -0.087302  1.100230

資料透視表

In [105]: df = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3,
.....:                    'B' :     ['A', 'B', 'C'] * 4,
.....:                    'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....:                    'D' : np.random.randn(12),
.....:                    'E' : np.random.randn(12)})
.....: 

In [106]: df
Out[106]: 
        A  B    C         D         E
0     one  A  foo  1.418757 -0.179666
1     one  B  foo -1.879024  1.291836
2     two  C  foo  0.536826 -0.009614
3   three  A  bar  1.006160  0.392149
4     one  B  bar -0.029716  0.264599
5     one  C  bar -1.146178 -0.057409
6     two  A  foo  0.100900 -1.425638
7   three  B  foo -1.035018  1.024098
8     one  C  foo  0.314665 -0.106062
9     one  A  bar -0.773723  1.824375
10    two  B  bar -1.170653  0.595974
11  three  C  bar  0.648740  1.167115

我們可以從這個資料中輕鬆地製作出資料透視表

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]: 
C             bar       foo
A     B                    
one   A -0.773723  1.418757
      B -0.029716 -1.879024
      C -1.146178  0.314665
three A  1.006160       NaN
      B       NaN -1.035018
      C  0.648740       NaN
two   A       NaN  0.100900
      B -1.170653       NaN
      C       NaN  0.536826

時間序列

對於頻率轉換,pandas有簡單、強大和高效的執行再取樣操作的工具。(例如,把頻率為1s的資料轉化為頻率為5min的資料)這種操作通常應用在金融領域,但也不限於此。

In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')

In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)

In [110]: ts.resample('5Min').sum()
Out[110]: 
2012-01-01    25083
Freq: 5T, dtype: int64

呈現時區

In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')

In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)

In [113]: ts
Out[113]: 
2012-03-06    0.464000
2012-03-07    0.227371
2012-03-08   -0.496922
2012-03-09    0.306389
2012-03-10   -2.290613
Freq: D, dtype: float64

In [114]: ts_utc = ts.tz_localize('UTC')

In [115]: ts_utc
Out[115]: 
2012-03-06 00:00:00+00:00    0.464000
2012-03-07 00:00:00+00:00    0.227371
2012-03-08 00:00:00+00:00   -0.496922
2012-03-09 00:00:00+00:00    0.306389
2012-03-10 00:00:00+00:00   -2.290613
Freq: D, dtype: float64

轉換到另一個時區

In [116]: ts_utc.tz_convert('US/Eastern')
Out[116]: 
2012-03-05 19:00:00-05:00    0.464000
2012-03-06 19:00:00-05:00    0.227371
2012-03-07 19:00:00-05:00   -0.496922
2012-03-08 19:00:00-05:00    0.306389
2012-03-09 19:00:00-05:00   -2.290613
Freq: D, dtype: float64

在時間區間內轉化

In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')

In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)

In [119]: ts
Out[119]: 
2012-01-31   -1.134623
2012-02-29   -1.561819
2012-03-31   -0.260838
2012-04-30    0.281957
2012-05-31    1.523962
Freq: M, dtype: float64

In [120]: ps = ts.to_period()

In [121]: ps
Out[121]: 
2012-01   -1.134623
2012-02   -1.561819
2012-03   -0.260838
2012-04    0.281957
2012-05    1.523962
Freq: M, dtype: float64

In [122]: ps.to_timestamp()
Out[122]: 
2012-01-01   -1.134623
2012-02-01   -1.561819
2012-03-01   -0.260838
2012-04-01    0.281957
2012-05-01    1.523962
Freq: MS, dtype: float64

在時間段和時間戳之間進行轉換可以使用便捷的算術函式。在下面的例子中,我們把在十一月結束的季度頻率轉化為在月末的九點的季度頻率:

In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')

In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)

In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9

In [126]: ts.head()
Out[126]: 
1990-03-01 09:00   -0.902937
1990-06-01 09:00    0.068159
1990-09-01 09:00   -0.057873
1990-12-01 09:00   -0.368204
1991-03-01 09:00   -1.144073
Freq: H, dtype: float64

分類

從0.15版本開始,pandas就可以在資料框內包含分類資料。

In [127]: df = pd.DataFrame({"id":[1,2,3,4,5,6], "raw_grade":['a', 'b', 'b', 'a', 'a', 'e']})
  • 1

把 raw_grade轉變為分類資料型別。

In [128]: df["grade"] = df["raw_grade"].astype("category")

In [129]: df["grade"]
Out[129]: 
0    a
1    b
2    b
3    a
4    a
5    e
Name: grade, dtype: category
Categories (3, object): [a, b, e]

將分類資料重新命名為更有意義的名字。

In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
  • 1

重新排列分類資料,同時新增缺失的分類資料。

In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium", "good", "very good"])

In [132]: df["grade"]
Out[132]: 
0    very good
1         good
2         good
3    very good
4    very good
5     very bad
Name: grade, dtype: category
Categories (5, object): [very bad, bad, medium, good, very good]

對分類資料進行排序會作用於每列而不是指定的列。

In [133]: df.sort_values(by="grade")
Out[133]: 
    id raw_grade      grade
5   6         e   very bad
1   2         b       good
2   3         b       good
0   1         a  very good
3   4         a  very good
4   5         a  very good

對分類資料列那列進行分組也會顯示出空的分類資料。

In [134]: df.groupby("grade").size()
Out[134]: 
grade
very bad     1
bad          0
medium       0
good         2
very good    3
dtype: int64

畫圖

In [135]: ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))

In [136]: ts = ts.cumsum()

In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x1187d7278>

在資料框中,plot()是一個非常方便的把所有列作為標籤繪製在圖示上的函式。

輸入/輸出資料

CSV

把資料輸出為csv檔案

In [141]: df.to_csv('foo.csv')

讀取csv檔案

In [142]: pd.read_csv('foo.csv')

HDF5

寫出一個HDF5儲存單元

In [143]: df.to_hdf('foo.h5','df')

讀入一個HDF5儲存單元

In [144]: pd.read_hdf('foo.h5','df')

Excel

寫出一個excel檔案

In [145]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

讀入一個excel檔案

In [146]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])