995. Minimum Number of K Consecutive Bit Flips
In an array A containing only 0s and 1s, a K-bit flip consists of choosing a (contiguous) subarray of length K and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.
Return the minimum number of K-bit flips required so that there is no 0 in the array.If it is not possible, return -1.
Example 1:
Input: A = [0,1,0], K = 1 Output: 2 Explanation: Flip A[0], then flip A[2].
Example 2:
Input: A = [1,1,0], K = 2 Output: -1 Explanation: No matter how we flip subarrays of size 2, we can't make the array become [1,1,1].
Example 3:
Input: A = [0,0,0,1,0,1,1,0], K = 3 Output: 3 Explanation: Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0] Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0] Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]
Note:
1 <= A.length <= 30000
1 <= K <= A.length
難度:Hard
題目:在一個只包含0和1的陣列中,每次可以翻轉K個元素,其中所有的0翻轉成1,1翻轉成0. 返回其最小的翻轉次數。如果不存在則返回-1.
思路:貪心演算法,每次找到第1個0後翻轉從該元素開始的K個元素。
Runtime: 171 ms, faster than 57.70% of Java online submissions for Minimum Number of K Consecutive Bit Flips.
Memory Usage: 48.9 MB, less than 5.03% of Java online submissions for Minimum Number of K Consecutive Bit Flips.
class Solution { public int minKBitFlips(int[] A, int K) { int i = 0, count = 0; while (i <= A.length - 1) { if (1 == A[i]) { i++; continue; } if (i + K > A.length) { return -1; } count++; for (int t = i; t < i + K; t++) { A[t] = (A[t] + 1) & 1; } } return count; } }